Cabanal Duvillard, T.; Guionnet, A. Large deviations upper bounds for the laws of matrix-valued processes and non-commutative entropies. (English) Zbl 1022.60026 Ann. Probab. 29, No. 3, 1205-1261 (2001). In this very interesting article the authors study the large deviations properties of non-commutative laws of large random matrices and related non-commutative entropies. The results obtained in this paper can be explained, in an easy way, considering one of the studied examples: the Hermitian Brownian motion matrix. This is a process \((H_N(t))_{t\in R^{+}}\) taking values in the space \({\mathcal H}_N\) of Hermitian matrices such that the entries of \((H_N(t))\) are complex Brownian motions verifying \(E[H_N^{i,j}(t)H_N^{k,l}(s)]=\frac{t\wedge s}N\delta_i^l\delta_k^j\). In a given fixed time \(t\), \(H_N(t)\) is a Wigner’s matrix of the Gaussian unitary ensemble (GUE). Let \(\hat{\mu}_t\equiv\frac{1}N\sum_{i=1}^{N}\delta_{\lambda_i^{(N)}}(t)\) be the spectral empirical process, where \((\lambda_i^{(N)}(t))_{1\leq i\leq N}\) are the real eigenvalues of \((H_N(t))\). In Theorem 1.1 it is established that this measure satisfies a large deviation upper bound in the scale \(N^2\), with rate function \({\mathbf S}(\nu)\) defined, if \(\nu_0=\delta_0\), equal to \[ S^{0,1}(\nu)=\sup_{f\in{\mathcal C}_b^{2,1}(R,[0,1])}\left(S^{0,1}(\nu,f)-\frac{1}{2}\int_0^1(\partial_xf(x,u))^2d\nu_u(x)du\right) \] where \(\nu\in {\mathcal C}([0,1], {\mathcal P}(R))\) is a continuous \({\mathcal P}(R)\)-valued process and \({\mathcal C}_b^{2,1}(R,[0,1])\) is the set of continuously differentiable functions on \(R\) with values in the set of \(2\)-times bounded continuously differentiable functions on \(R\). Moreover \[ S^{0,1}(\nu,f)=\int f(x,t)d\nu_t(x)-\int f(x,s)d\nu_s(x)-\int_s^t\int\partial_uf(x,u)d\nu_u(x)du \]\[ -\frac{1}{2}\int_s^t\int\int\frac{\partial_xf(x,u) -\partial_xf(y,u)}{x-y}d\nu_u(x)d\nu_u(y)du. \] If \(\nu_0\neq \delta_0\), the authors define \({\mathbf S}(\nu)=\infty\). It is shown that \[ \limsup_{N\to\infty}\frac 1{N^2}\ln P(\hat{\mu}^{(N)})\leq-\inf_{\nu\in F}{\mathbf S}(\nu) \] for every closed subset \( F\in {\mathcal C}([0,1],{\mathcal P}(R))\). In the same theorem a large deviation lower bound is also proved but the authors give evidence that it could be not so sharp. By using these large deviation inequalities and the contraction principle they obtain in Corollary 1.1 a large deviation principle of the GUE (i.e. \(t=1\)). Then in Corollary 1.2 they also get the exponentially fast convergence of \(\mu^{(N)}\) toward the semi-circular process. The method of proof allows also considering several independent Hermitian Brownian motions. Thus the authors establish a large deviation upper bound for the process of the law (in a non-commutative sense) of the time marginal of these processes. By using the contraction principle they get a large deviation upper bound of several independent Wigner’s matrices. Since the obtained rate function defines a natural entropy for the non-commutative law of several variables this quantity is then compared with the one defined by D. Voiculescu.The key ingredient in the proofs of this paper is that \(\mu^{(N)}\) satisfies a stochastic differential equation with generator and martingale bracket which only depends on \(\mu^{(N)}\). Itô calculus and Markov property lead naturally to use the techniques that have been developed before to obtain large deviations bounds for the empirical processes in the field of hydrodynamics. Reviewer: J.R.León (Caracas) Cited in 3 ReviewsCited in 30 Documents MSC: 60F10 Large deviations 60J65 Brownian motion 46L53 Noncommutative probability and statistics Keywords:large deviations; random matrices; non-commutative measure; integration × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Arnold, L. (1967). On the asymptotic distribution of eigenvalues of random matrices. J. Math. Anal. Appl. 20 262-268. · Zbl 0246.60029 · doi:10.1016/0022-247X(67)90089-3 [2] Ben Arous, G. and Guionnet, A. (1997). Large deviations for Wigner’s law and Voiculescu’s non commutative entropy. Probab. Theory Related Fields 108 517-542. · Zbl 0954.60029 · doi:10.1007/s004400050119 [3] Ben Arous, G. and Zeitouni, O. (1998). Large deviations from the circular law. ESAIM Probab. Statist. 2 123-134. · Zbl 0916.60022 · doi:10.1051/ps:1998104 [4] Biane, P.(1998). Processes with free increments. Math.227 143-174. · Zbl 0902.60060 · doi:10.1007/PL00004363 [5] Biane, P. (1997). Free Brownian motion, free stochastic calculus and random matrices. In Free Probability Theory (D. Voiculescu, ed.) 1-19. Amer. Math. Soc., Providence, RI. · Zbl 0873.60056 [6] Biane, P. (1993). Calcul stochastique non-commutatif. Lecture Notes in Math. 1608 1-96. Springer, New York. · Zbl 0878.60041 [7] Bonami, A., Bouchut, F., Cepa, E. and Lepingle, D. (1999). A non linearstochastic differential equation involving Hilbert transform, J. Funct. Anal. 165 390-406. · Zbl 0935.60095 · doi:10.1006/jfan.1999.3420 [8] Cabanal-Duvillard, T. (1999). Probabilités libres et calcul stochastique. Application aux grandes matrices aléatoires. Thesis, Université Paris 6. [9] Cabanal-Duvillard, T. and Guionnet, A. (2000). Discussion around non-commutative en tropies. To appear in Adv. Math (2002). · Zbl 1022.60026 [10] Cabanal-Duvillard, T. and Ionescu, V. (1997). Un théor eme central limite pour des variables aléatoires non-commutatives. CRAS, t. 325, Sér. I 1117-1120. · Zbl 0899.60006 · doi:10.1016/S0764-4442(97)88716-2 [11] Chan, T. (1993). The Wigner semi-circle law and eigenvalues of matrix valued diffusions. Probab. Theory Related Fields 93 249-272. · Zbl 0767.60050 · doi:10.1007/BF01195231 [12] Chan, T. (1993). Large deviations for empirical measure with degenerate limiting distribution. Probab. Theory Related Fields 97 179-193. · Zbl 0793.60031 · doi:10.1007/BF01199319 [13] Dawson, D. A. and Gärtner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20 247-308. · Zbl 0613.60021 · doi:10.1080/17442508708833446 [14] Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett, Boston. · Zbl 0793.60030 [15] Deuschel, J-D. and Stroock, D. W. (1989). Large Deviations. Academic Press, New York. · Zbl 0675.60086 · doi:10.1214/aop/1176991495 [16] Gärtner, J. (1988). On the McKean-Vlasov limit forinteracting diffusions, I. Math. Nach. 137 197-248. · Zbl 0678.60100 [17] Guionnet, A. and Zeitouni, O. (2001). Large deviations asymptotics for spherical integrals. To appearin J. Funct. Anal. · Zbl 1002.60021 · doi:10.1006/jfan.2001.3833 [18] Guo, C.-H., Papanicolaou, G. and Varadhan, S. R. S. (1988). NonlinearDiffusion limit for a system with nearest neighbor interaction. Comm. Math. Phys. 118 31-59. · Zbl 0652.60107 · doi:10.1007/BF01218476 [19] Haagerup, U. and Thorbkørnsen, S. (1998). Random matrices with complex Gaussian entries. Preprint. Avaialble at www.imada.ou.dk/ haagerup/2000-.html. URL: · Zbl 1041.15018 [20] Hiai, F. and Petz. D. (1998). Eigenvalues density of the Wishart matrix and large deviations. Infinite Dimensional Anal. Quantum Probab. 1 633-646. · Zbl 0934.60006 · doi:10.1142/S021902579800034X [21] Hiai, F. and Petz. (1998). Logarithmic energy as entropy functional. In Advances in Differential Equations and Mathematical Physics (E. Carlen, E. M. Harrell and M. Loss, eds.) 205-221. Amer. Math. Soc., Providence, RI. · Zbl 0893.15011 [22] Hiai, F. and Petz. (2000). The Semicircle Law, Free Random Variables and Entropy. Amer. Math. Soc., Providence, RI. · Zbl 0955.46037 [23] Kipnis, C. Olla, S. and Varadhan, S. R. S. (1989). Hydrodynamics and large deviation for simple exclusion processes. Comm. Pure Appl. Math. 42 115-137. · Zbl 0644.76001 · doi:10.1002/cpa.3160420202 [24] Pastur, L. A. and Martchenko, V. A. (1967). The distribution of eigenvalues in certain sets of random matrices. Math. USSR-Sbornik 72 507-536. · Zbl 0152.16101 [25] Rogers, L. C. G. and Shi,(1993). Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 555-570. · Zbl 0794.60100 · doi:10.1007/BF01196734 [26] Rudin, W. (1986). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York. · Zbl 0954.26001 [27] Voiculescu, D. (1993). The analogues of entropy and Fisher’s information measure in free probability theory, I. Comm. Math. Phys. 155 71-92. · Zbl 0781.60006 · doi:10.1007/BF02100050 [28] Voiculescu, D. (1994). The analogues of entropy and Fisher’s information measure in free probability theory, II. Invent. Math. 118 411-440. · Zbl 0820.60001 · doi:10.1007/BF01231539 [29] Voiculescu, D. (1998). The analogues of Entropy and Fisher’s information measure in free probability theory, V: Noncommutative Hilbert transforms. Invent. Math. 132 189-227. · Zbl 0930.46053 · doi:10.1007/s002220050222 [30] Voiculescu, D. (2000). A Note on cyclic gradients. Preprint PAM-781. Univ. California, Berkeley. · Zbl 1007.16026 · doi:10.1512/iumj.2000.49.2077 [31] Wachter, K. W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6 1-18. · Zbl 0374.60039 · doi:10.1214/aop/1176995607 [32] Wigner, E. (1958). On the distribution of the roots of certain symmetric matrices. Ann. Math. 67 325-327. JSTOR: · Zbl 0085.13203 · doi:10.2307/1970008 [33] Wishart, J. (1928). The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20A 32-52. · JFM 54.0565.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.