×

The Riemann approach to stochastic integration using non-uniform meshes. (English) Zbl 1022.60055

This paper shows how the stochastic integral with respect to semimartingales can be defined using Riemann sums with non-uniform meshes.

MSC:

60H05 Stochastic integrals
60H20 Stochastic integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bartle, R.G.; Sherbert, D.R., Introduction to real analysis, (2000), Wiley · Zbl 0494.26002
[2] Carmona, R.A.; Nualart, D., Nonlinear stochastic integrators, equations and flows, Stochastics monographs, 6, (1990), Gordon and Breach New York
[3] Chew, T.S., On nonlinear integrals, () · Zbl 0666.34041
[4] Chew, T.S., On kurzweil generalised ordinary differential equations, J. differential equations, 76, 293-296, (1988) · Zbl 0666.34041
[5] Chung, K.L.; Williams, R.J., Introduction to stochastic integration, (1990), Birkhäuser · Zbl 0725.60050
[6] Henstock, R., The efficiency of convergence factors for functions of a continuous real variable, J. London math. soc., 30, 273-286, (1955) · Zbl 0066.09204
[7] Henstock, R., Lectures on the theory of integration, (1988), World Scientific Singapore · Zbl 0668.28001
[8] Henstock, R., The general theory of integration, (1991), Oxford Univ. Press Oxford · Zbl 0745.26006
[9] Henstock, R., Stochastic and other functional integrals, Real anal. exchange, 16, 460-470, (1990-91) · Zbl 0727.28013
[10] Hitsuda, M., Formula for Brownian partial derivatives, Publ. fac. integrated arts sci. Hiroshima univ., 3, 1-15, (1979)
[11] Itô, K., Multiple Wiener integral, J. math. soc. Japan, 3, 157-169, (1951) · Zbl 0044.12202
[12] Kurzweil, J., Generalised ordinary differential equations and continuous dependence on a parameter, Czechoslovak math. J., 7, 418-446, (1957) · Zbl 0090.30002
[13] Lee, P.Y., Lanzhou lectures on Henstock integration, (1989), World Scientific Singapore · Zbl 0699.26004
[14] Lee, P.Y.; Vyborny, R., The integral, an easy approach after kurzweil and Henstock, (2000), Cambridge Univ. Press · Zbl 0941.26003
[15] Lee, T.W., On the generalised Riemann integral and stochastic integral, J. austral. math. soc., 41, 313-317, (1976)
[16] Marraffa, V., A descriptive characterization of the variational Henstock integral, (), 22, 39-46, (1999), also
[17] McShane, E.J., Stochastic calculus and stochastic models, (1974), Academic Press New York · Zbl 0292.60090
[18] Mouldowney, P., A general theory of integration in function spaces, Pitman research notes in math., 153, (1987), Longman Harlow
[19] Nualart, D., The Malliavin calculus and related topics, (1995), Springer New York · Zbl 0837.60050
[20] Nualart, D.; Pardoux, E., Stochastic calculus with anticipating integrands, Probab. theory related fields, 78, 535-581, (1988) · Zbl 0629.60061
[21] Pardoux, E.; Protter, P., A two-sided stochastic integral and its calculus, Probab. theory related fields, 76, 15-49, (1987) · Zbl 0608.60058
[22] Pfeffer, W.F., The Riemann approach to integration, (1993), Cambridge Univ. Press · Zbl 0554.26008
[23] Pop-Stojanovic, Z.R., On Mcshane’s belated stochastic integral, SIAM J. appl. math., 22, 87-92, (1972) · Zbl 0243.60035
[24] Protter, P., A comparison of stochastic integrals, Ann. probab., 7, 276-289, (1979) · Zbl 0404.60062
[25] Protter, P., Stochastic integration and differential equations, (1990), Springer New York
[26] Revuz, D.; Yor, M., Continuous martingales and Brownian motion, (1994), Springer · Zbl 0804.60001
[27] Skorohod, A.V., On a generalisation of a stochastic integral, Theory probab. appl., 20, 219-233, (1975)
[28] Stratonovich, R.L., A new representation for stochastic integrals and equations, J. SIAM control, 4, 362-371, (1966) · Zbl 0143.19002
[29] Toh, T.L.; Chew, T.S., A variational approach to Itô’s integral, (), 291-299 · Zbl 0981.60054
[30] Weizsäcker, H.; Winkler, G., Stochastic integrals: an introduction, (1990), Vieweg · Zbl 0718.60049
[31] Wong, E.; Zakai, M., An extension of stochastic integrals in the plane, Ann. probab., 5, 770-778, (1977) · Zbl 0376.60060
[32] Xu, J.G.; Lee, P.Y., Stochastic integrals of Itô and Henstock, Real anal. exchange, 18, 352-366, (1992-93) · Zbl 0806.28009
[33] Zähle, M., Integration with respect to fractal functions and stochastic calculus I, Probab. theory related fields, 111, 337-374, (1998) · Zbl 0918.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.