zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Separable nonlinear least squares: The variable projection method and its applications. (English) Zbl 1022.65014
Summary: We review 30 years of developments and applications of the variable projection method for solving separable nonlinear least-squares problems. These are problems for which the model function is a linear combination of nonlinear functions. Taking advantage of this special structure, the method of variable projections eliminates the linear variables obtaining a somewhat more complicated function that involves only the nonlinear parameters. This procedure not only reduces the dimension of the parameter space but also results in a better-conditioned problem. The same optimization method applied to the original and reduced problems will always converge faster for the latter. We present first a historical account of the basic theoretical work and its various computer implementations, and then report on a variety of applications from electrical engineering, medical and biological imaging, chemistry, robotics, vision, and environmental sciences. An extensive bibliography is included. The method is particularly well suited for solving real and complex exponential model fitting problems, which are pervasive in their applications and are notoriously hard to solve.

65D10Smoothing, curve fitting
65-03Historical (numerical analysis)
65-02Research monographs (numerical analysis)
65C60Computational problems in statistics
62J02General nonlinear regression
01A60Mathematics in the 20th century
Full Text: DOI