zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new analytic algorithm of Lane--Emden type equations. (English) Zbl 1022.65078
Summary: An reliable, ease-to-use analytic algorithm is provided for Lane-Emden type equation which models many phenomena in mathematical physics and astrophysics. This algorithm logically contains the well-known Adomian decomposition method. Different from all other analytic techniques, this algorithm itself provides us with a convenient way to adjust convergence regions even without Páde technique. Some applications are given to show its validity.

65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L20Stability and convergence of numerical methods for ODE
85-08Computational methods (astronomy and astrophysics)
85A15Galactic and stellar structure
Full Text: DOI
[1] Davis, H. T.: Introduction to nonlinear differential and integral equations. (1962) · Zbl 0106.28904
[2] Chandrasekhar, S.: Introduction to the study of stellar structure. (1967) · Zbl 0149.24301
[3] Shawagfeh, N. T.: Nonperturbative approximate solution for Lane--Emden equation. J. math. Phys. 34, No. 9, 4364-4369 (1993) · Zbl 0780.34007
[4] Wazwaz, A. M.: A new algorithm for solving differential equations of Lane--Emden type. Appl. math. Comput. 118, 287-310 (2001) · Zbl 1023.65067
[5] S.J. Liao, The proposed homotopy analysis technique for the solutions of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992
[6] Cole, J. D.: Perturbation methods in applied mathematics. (1968) · Zbl 0162.12602
[7] Van Dyke, M.: Perturbation methods in fluid mechanics. (1975) · Zbl 0329.76002
[8] Grasman, J.: Asymptotic methods for relaxation oscillations and applications. Appl. math. Sci. 63 (1987) · Zbl 0627.34037
[9] Murdock, J. A.: Perturbations: theory and methods. (1991) · Zbl 0810.34047
[10] Nayfeh, A. H.: Perturbation methods. (2000) · Zbl 0995.35001
[11] Lyapunov, A. M.: General problem on stability of motion (English translation). (1992) · Zbl 0786.70001
[12] Karmishin, A. V.; Zhukov, A. I.; Kolosov, V. G.: Methods of dynamics calculation and testing for thin-walled structures. (1990)
[13] Adomian, G.: Nonlinear stochastic differential equations. J. math. Anal. appl. 55, 441-452 (1976) · Zbl 0351.60053
[14] Adomian, G. E.; Adomian, G.: A global method for solution of complex systems. Math. model. 5, 521-568 (1984) · Zbl 0556.93005
[15] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[16] Rach, R.: On the Adomian method and comparisons with Picard’s method. J. math. Anal. appl. 10, 139-159 (1984)
[17] Rach, R.: A convenient computational form for the an polynomials. J. math. Anal. appl. 102, 415-419 (1984) · Zbl 0552.60061
[18] Adomian, G.; Rach, R.: On the solution of algebraic equations by the decomposition method. Math. anal. Appl. 105, No. 1, 141-166 (1985) · Zbl 0552.60060
[19] Cherruault, Y.: Convergence of Adomian’s method. Kyberneters 8, No. 2, 31-38 (1988) · Zbl 0697.65051
[20] Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. math. Appl. 21, 101-127 (1991) · Zbl 0732.35003
[21] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to nonlinear equations. Math. compact. Model. 20, No. 9, 69-73 (1994) · Zbl 0822.65027
[22] Khuri, S. A.: A new approach to the cubic Schrödinger equation: an application of the decomposition technique. Appl. math. Comput. 97, 251-254 (1998) · Zbl 0940.35187
[23] Michael, G.: A note on the decomposition method for operator equations. Appl. math. Comput. 106, 215-220 (1999) · Zbl 1022.65067
[24] Wazwaz, A. M.: The decomposition method applied to systems of partial differential equations and to the reaction--diffusion Brusselator model. Appl. math. Comput. 110, 251-264 (2000) · Zbl 1023.65109
[25] Babolian, E.; Biazar, J.: Solving the problem of biological species living together by Adomian decomposition method. Appl. math. Comput. 129, 339-343 (2001) · Zbl 1023.65144
[26] Ramos, J. I.; Soler, E.: Domain decomposition techniques for reaction--diffusion equations in two-dimensional regions with re-entrant corners. Appl. math. Comput. 118, 189-221 (2001) · Zbl 1023.65101
[27] Babolian, E.; Biazar, J.: On the order of convergence of Adomian method. Appl. math. Comput. 130, 383-387 (2002) · Zbl 1044.65043
[28] Babolian, E.; Biazar, J.: Solution of nonlinear equations by modified Adomian decomposition method. Appl. math. Comput. 132, 167-172 (2002) · Zbl 1023.65040
[29] Shawagfeh, N. T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. math. Comput. 131, 517-529 (2002) · Zbl 1029.34003
[30] Casasús, L.; Al-Hayani, W.: The decomposition method for ordinary differential equations with discontinuities. Appl. math. Comput. 131, 245-251 (2002) · Zbl 1030.34012
[31] Wazwaz, A. M.: Exact solutions for variable coefficients fourth-order parabolic partial differential equations in higher-dimensional spaces. Appl. math. Comput. 130, 415-424 (2002) · Zbl 1024.35037
[32] Liao, S. J.: A kind of approximate solution technique which does not depend upon small parameters: a special example. Int. J. Non-linear mech. 30, 371-380 (1995) · Zbl 0837.76073
[33] Liao, S. J.: A kind of approximate solution technique which does not depend upon small parameters (ii): an application in fluid mechanics. Int. J. Non-linear mech. 32, 815-822 (1997) · Zbl 1031.76542
[34] Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-linear mech. 34, No. 4, 759-778 (1999) · Zbl 05137896
[35] Liao, S. J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017
[36] Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. fluid mech. 453, 411-425 (2002) · Zbl 1007.76014
[37] Liao, S. J.; Chwang, A. T.: Application of homotopy analysis method in nonlinear oscillations. ASME J. Appl. mech. 65, 914-922 (1998)
[38] S.J. Liao, An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int. J. Non-Linear Mech., in press · Zbl 05138214
[39] S.J. Liao, K.F. Cheung, Analytic solution for nonlinear progressive waves in deep water, J. Eng. Math., in press · Zbl 1112.76316
[40] S.J. Liao, An explicit analytic solution to the Thomas--Fermi equation, Appl. Math. Comput., in press · Zbl 1034.34005
[41] Liao, S. J.: An analytic approximation of the drag coefficient for the viscous flow past a sphere. Int. J. Non-linear mech. 37, 1-18 (2002) · Zbl 1116.76335