×

zbMATH — the first resource for mathematics

Layer-adapted meshes for convection-diffusion problems. (English) Zbl 1022.76036
Summary: A classification and a survey are given of layer-adapted meshes for stationary convection-dominated convection-diffusion problems. For a number of standard numerical schemes, theoretical results are presented that demonstrate that the use of properly layer-adapted meshes yields robust methods, i.e., methods that perform equally well no matter how dominant is the convection. We review a number of techniques used in the convergence analysis of these methods.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76R99 Diffusion and convection
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, Pure and applied mathematics, (2000), Wiley Interscience Chichester · Zbl 1008.65076
[2] Andreev, V.B., Convergence of a modified samarskii’s monotonic scheme on a smoothly condensing grid, Comput. math. math. phys., 38, 8, 1212-1224, (1998) · Zbl 0972.65045
[3] V.B. Andreev, Anisotropic estimates for the discrete green’s function of a monotone difference operator in the singularly perturbed case and its application, Preprint MATH-NM-06-2002, Institut für Numerische Mathematik, TU Dresden, July 2000
[4] V.B. Andreev, A priori estimates for solutions of monotone three point difference schemes, Preprint Lomonosov State University, 2001
[5] Andreev, V.B.; Kopteva, N.V., A study of difference schemes with the first derivative approximated by a central difference ratio, Comput. math. math. phys., 36, 8, 1065-1078, (1996) · Zbl 0911.65068
[6] Andreev, V.B.; Kopteva, N.V., On the convergence, uniform with respect to a small parameter, of monotone three-point finite-difference approximations, Differ. equ., 34, 7, 921-929, (1998) · Zbl 0966.76059
[7] Andreev, V.B.; Savin, I.A., The uniform convergence with respect to a small parameter of A.A. samarskij’s monotone scheme and its modification, Comput. math. math. phys., 35, 5, 581-591, (1995) · Zbl 0852.65062
[8] Andreev, V.B.; Savin, I.A., The computation of boundary flow with uniform accuracy with respect to a small parameter, Comput. math. math. phys., 36, 12, 1687-1692, (1996) · Zbl 0915.65087
[9] Angermann, L., Numerical solution of second-order elliptic equations on plane domains, Math. model. numer. anal., 25, 169-191, (1991) · Zbl 0717.65082
[10] Angermann, L., Error estimates for the finite-element solution of an elliptic singularly perturbed problem, IMA J. numer. anal., 15, 161-196, (1995) · Zbl 0831.65117
[11] Apel, T.; Dobrowolski, M., Anisotropic interpolation with applications to the finite element method, Computing, 47, 3-4, 277-293, (1992) · Zbl 0746.65077
[12] Axelsson, O.; Nikolova, M., Adaptive refinement for convection – diffusion problems based on a defect-correction technique and finite difference method, Computing, 58, 1, 1-30, (1997) · Zbl 0876.35009
[13] Baba, K.; Tabata, M., On a conservative upwind finite element scheme for convective diffusion equations, RAIRO anal. numer., 15, 3-25, (1981) · Zbl 0466.76090
[14] Bakhvalov, N.S., Towards optimization of methods for solving boundary value problems in the presence of boundary layers, Zh. vychisl. mater. mater. fiz., 9, 841-859, (1969), (in Russian)
[15] G. Beckett, The robust and efficient numerical solution of singularly perturbed boundary value problems using grid adaptivity, Ph.D. Thesis, University of Strathclyde, 1999
[16] Beckett, G.; Mackenzie, J.A., Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem, Appl. numer. math., 35, 2, 87-109, (2000) · Zbl 0963.65086
[17] Boglaev, I.P., Approximate solution of a non-linear boundary value problem with a small parameter at the highest-order derivative, Comput. math. math. phys., 24, 6, 30-35, (1984) · Zbl 0595.65093
[18] de Boor, C., Good approximation by splines with variable knots, (), 57-72
[19] Braianov, I.A.; Vulkov, L.G., Uniform in a small parameter convergence of samarskii’s monotone scheme and its modification for the convection – diffusion equation with a concentrated source, Comput. math. math. phys., 40, 4, 534-550, (2000) · Zbl 0994.65109
[20] Clavero, C.; Gracia, J.L.; Lisbona, F., High order methods on shishkin meshes for singular perturbation problems of convection – diffusion type, Numer. algorithms, 22, 1, 73-97, (1999) · Zbl 1083.65514
[21] Dobrowolski, M.; Roos, H.-G., A priori estimates for the solution of convection – diffusion problems and interpolation on shishkin meshes, Z. anal. anwend., 16, 4, 1001-1012, (1997) · Zbl 0892.35014
[22] Dorfi, E.A.; Drury, L.O’C., Simple adaptive grids for 1-D initial value problems, J. comput. phys., 69, 175-195, (1987) · Zbl 0607.76041
[23] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, and G.I. Shishkin, The ε-uniform convergence of the discrete derivatives for singularly perturbed problems, Preprint TCDM-9907, Trinity College Dublin, 1999
[24] Farrell, P.A.; Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I., Robust computational techniques for boundary layers, Applied mathematics and mathematical computation, vol. 16, (2000), Chapman and Hall/CRC Boca Raton, FL · Zbl 0964.65083
[25] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Singularly perturbed convection – diffusion problems with boundary and weak interior layers, Preprint MS-01-07, School of Mathematical Sciences, Dublin City University, 2001a
[26] Farrell, P.A.; O’Riordan, E.; Miller, J.J.H.; Shishkin, G.I., Parameter-uniform fitted mesh method for quasilinear differential equations with boundary layers, Comput. meth. appl. math., 1, 2, 154-172, (2001) · Zbl 0977.34015
[27] A. Fröhner, private communication, December 2001
[28] Fröhner, A.; Linß, T.; Roos, H.-G., Defect correction on shishkin-type meshes, Numer. algorithms, 26, 3, 281-299, (2001) · Zbl 0976.65074
[29] Fröhner, A.; Roos, H.-G., The ε-uniform convergence of a defect correction method on a shiskin mesh, Appl. numer. math., 37, 1-2, 79-94, (2001) · Zbl 0978.65069
[30] Gartland, E.C., Graded-mesh difference schemes for singularly perturbed two-point boundary value problems, Math. comput., 51, 184, 631-657, (1988) · Zbl 0699.65063
[31] Han, H.; Kellogg, R.B., Differentiability properties of solutions of the equation −ε2δu+ru=f(x,y) in a square, SIAM J. math. anal., 21, 394-408, (1990) · Zbl 0732.35020
[32] Havik, E.D.; Hemker, P.W.; Hoffmann, W., Application of the over-set grid technique to a model singular perturbation problem, Computing, 65, 4, 339-356, (2000) · Zbl 0986.65119
[33] Hegarty, A.F.; Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I., Use of central-difference operators for solution of singularly perturbed problems, Commun. numer. methods engrg., 10, 4, 297-302, (1994) · Zbl 0815.65108
[34] Hemker, P.W., The use of defect correction for the solution of a singularly perturbed o.d.e, Seminarber., humboldt-univ. Berlin, sekt. math., 46, 91-103, (1982) · Zbl 0504.65050
[35] Hughes, T.J.R.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[36] Il’in, A.M., A difference scheme for a differential equation with a small parameter affecting the highest derivative, Mater. zametki, 6, 237-248, (1969), (in Russian) · Zbl 0185.42203
[37] Kellogg, R.B.; Tsan, A., Analysis of some difference approximations for a singular perturbation problem without turning points, Math. comput., 32, 1025-1039, (1978) · Zbl 0418.65040
[38] Kopteva, N.; Stynes, M., Approximation of derivatives in a convection – diffusion two-point boundary value problem, Appl. numer. math., 39, 1, 47-60, (2001) · Zbl 0987.65069
[39] Kopteva, N.V., Uniform convergence with respect to a small parameter of a four-point scheme for the one-dimensional stationary convection – diffusion equation, Differ. equ., 32, 7, 958-964, (1996) · Zbl 0888.65086
[40] Kopteva, N.V., Uniform convergence with respect to a small parameter of a scheme with central difference on refining grids, Comput. math. math. phys., 39, 10, 1594-1610, (1999) · Zbl 0977.65064
[41] Kopteva, N.V., Maximum norm a posteriori error estimates for a one-dimensional convection – diffusion problem, SIAM J. numer. anal., 39, 2, 423-441, (2001) · Zbl 1003.65091
[42] N.V. Kopteva, Error expansion for an upwind scheme applied to a two-dimensional convection – diffusion problem, Preprint, Lomonosov Moscow State University, 2002 · Zbl 1055.65119
[43] Kopteva, N.V.; Linß, T., Uniform second-order pointwise convergence of a central difference approximation for a quasilinear convection – diffusion problem, J. comput. appl. math., 137, 2, 257-267, (2001) · Zbl 1103.65320
[44] Kopteva, N.V.; Stynes, M., A robust adaptive method for a quasilinear one-dimensional convection – diffusion problem, SIAM J. numer. anal., 39, 4, 1446-1467, (2001) · Zbl 1012.65076
[45] Lenferink, W., Pointwise convergence of approximations to a convection – diffusion equation on a shishkin mesh, Appl. numer. math., 32, 1, 69-86, (2000) · Zbl 0942.65090
[46] Lenferink, W., Some superconvergence results for finite element discretizations on a shishkin mesh of a convection – diffusion problem, (), 193-198
[47] Lin, Q., A rectangle test for finite element analysis, Proceedings of systems science and systems engineering, (1991), Culture Publish Great Wall (HK), pp. 213-216
[48] Linß, T., An upwind difference scheme on a novel shishkin-type mesh for a linear convection – diffusion problem, J. comput. appl. math., 110, 1, 93-104, (1999) · Zbl 0939.65116
[49] Linß, T., Analysis of a Galerkin finite element method on a bakhvalov – shishkin mesh for a linear convection – diffusion problem, IMA J. numer. anal., 20, 4, 621-632, (2000) · Zbl 0966.65083
[50] Linß, T., Uniform superconvergence of a Galerkin finite element method on shishkin-type meshes, Numer. methods partial differ. equ., 16, 5, 426-440, (2000) · Zbl 0958.65110
[51] Linß, T., The necessity of shishkin-decompositions, Appl. math. lett., 14, 891-896, (2001) · Zbl 0986.65071
[52] Linß, T., Sufficient conditions for uniform convergence on layer-adapted grids, Appl. numer. anal., 37, 1-2, 241-255, (2001) · Zbl 0976.65084
[53] Linß, T., Uniform pointwise convergence of finite difference schemes using grid equidistribution, Computing, 66, 1, 27-39, (2001) · Zbl 0984.65077
[54] Linß, T., Uniform second-order pointwise convergence of a finite difference approximation for a quasilinear convection – diffusion problem, Comput. math. math. phys., 41, 6, 898-909, (2001) · Zbl 1029.65088
[55] T. Linß, Error expansion for a first-order upwind difference scheme applied to a model convection – diffusion problem, Preprint MATH-NM-01-2002, Institut für Numerische Mathematik, TU Dresden, February 2002 · Zbl 1060.65085
[56] Linß, T., Finite difference schemes for convection – diffusion problems with a concentrated source and a discontinuous convection field, Comput. meth. appl. math., 2, 1, 41-49, (2002) · Zbl 0995.65078
[57] Linß, T., Solution decomposition for linear convection – diffusion problems, Z. anal. anwend., 21, 1, 209-214, (2002) · Zbl 1012.34020
[58] Linß, T., Uniform pointwise convergence of an upwind finite volume method on layer-adapted meshes, ZAMM, Z. angew. math. mech., 82, 4, 247-254, (2002) · Zbl 1006.65127
[59] T. Linß, Layer-adapted meshes for convection – diffusion problems, Habilitationsschrift, TU Dresden, in preparation · Zbl 1189.65006
[60] T. Linß Robustness of an upwind finite difference scheme for convection – diffusion problems with boundary turning points, J. Comput. Math (in press) · Zbl 1061.65072
[61] Linß, T.; Roos, H.-G.; Vulanović, R., Uniform pointwise convergence on shishkin-type meshes for quasilinear convection – diffusion problems, SIAM J. numer. anal., 38, 3, 897-912, (2000) · Zbl 0977.65067
[62] Linß, T.; Stynes, M., A hybrid difference scheme on a shishkin mesh for linear convection – diffusion problems, Appl. numer. math., 31, 3, 255-270, (1999) · Zbl 0939.65117
[63] Linß, T.; Stynes, M., Asymptotic analysis and shishkin-type decomposition for an elliptic convection – diffusion problem, J. math. anal. appl., 261, 2, 604-632, (2001) · Zbl 1200.35046
[64] Linß, T.; Stynes, M., Numerical methods on shishkin meshes for linear convection – diffusion problems, Comput. methods appl. mech. engrg., 190, 28, 3527-3542, (2001) · Zbl 0988.76062
[65] Linß, T.; Stynes, M., The SDFEM on shishkin meshes for linear convection – diffusion problems, Numer. math., 87, 3, 457-484, (2001) · Zbl 0969.65106
[66] Linß, T.; Vulanović, R., Uniform methods for semilinear problems with an attractive boundary turning point, Novi sad J. math., 31, 2, 99-114, (2001) · Zbl 1016.65055
[67] Liseikin, V.D., The use of special transformations in the numerical solution of boundary layer problems, Comput. math. math. phys., 30, 1, 43-53, (1990) · Zbl 0721.65044
[68] Liseikin, V.D., Grid generation methods, Scientific computation, vol. 24, (1999), Springer Berlin · Zbl 0949.65098
[69] Liseikin, V.D., On the numerical solution of singularly perturbed problems with boundary turning points, Comput. maths math. phys., 41, 1, 55-83, (2000) · Zbl 1085.65512
[70] Liseikin, V.D., Layer resolving grids and transformations for singular perturbation problems, (2001), VSP BV Utrecht · Zbl 0990.65027
[71] Liseikin, V.D., On the numerical solution of singularly perturbed problems with turning points, Comput. math. math. phys., 41, 1, 55-83, (2001) · Zbl 1085.65512
[72] V.D. Liseikin, N.N. Yanenko, On the numerical solution of equations with interior and exterior boundary layers on a nonuniform mesh, in: BAIL III, Proceedings of the 3rd International Conference on Boundary and Interior layers, Dublin/Ireland, 1984, pp. 68-80 · Zbl 0672.65070
[73] Mackenzie, J.A., Uniform convergence analysis of an upwind finite-difference approximation of a convection – diffusion boundary value problem on an adaptive grid, IMA J. numer. anal., 19, 2, 233-249, (1999) · Zbl 0929.65047
[74] Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I., On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems, IMA J. numer. anal., 15, 1, 89-99, (1995) · Zbl 0814.65082
[75] Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I., Fitted numerical methods for singular perturbation problems. error estimates in the maximum norm for linear problems in one and two dimensions, (1996), World Scientific Singapore · Zbl 0915.65097
[76] Morton, K.W., Numerical solution of convection – diffusion problems, Applied mathematics and mathematical computation, Vol. 12, (1996), Chapman and Hall London · Zbl 0861.65070
[77] M.C. Natividad, M. Stynes, Richardson extrapolation for a convection – diffusion problem using a Shishkin mesh, Appl. Numer. Math. (in press) · Zbl 1019.65053
[78] Nikolova, M.; Axelsson, O., Uniform in ε convergence of finite element method for convection – diffusion equations using a priori chosen meshes, Cwi q, 10, 3-4, 253-276, (1997) · Zbl 0911.65109
[79] M. Nikolova, O. Axelsson. Uniform in ε convergence of defect-correction method for convection – diffusion problems, University of Nijmegen, Deptartment of Mathematics, Report No. 9905, February 1999
[80] Qiu, Y.; Sloan, D.M., Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid, J. comput. appl. math., 101, 1-2, 1-25, (1999) · Zbl 0959.65087
[81] Qiu, Y.; Sloan, D.M.; Tang, T., Numerical solution of a singularly pertured two-point boundary value problem using equidistribution: analysis of convergence, J. comput. appl. math., 116, 1, 121-143, (2000) · Zbl 0977.65069
[82] Roos, H.-G., Layer-adapted grids for singular perturbation problems, ZAMM, Z. angew. math. mech., 78, 5, 291-309, (1998) · Zbl 0905.65095
[83] Roos, H.-G., Optimal convergence of basic schemes for elliptic boundary value problems with strong parabolic layers, J. math. anal. appl., 267, 194-208, (2002) · Zbl 1051.65109
[84] Roos, H.-G.; Linß, T., Sufficient conditions for uniform convergence on layer-adapted grids, Computing, 63, 1, 27-45, (1999) · Zbl 0931.65085
[85] Roos, H.-G.; Linß, T., Gradient recovery for singularly perturbed boundary value problems. I: one-dimensional convection – diffusion, Computing, 66, 2, 163-178, (2001) · Zbl 0977.65068
[86] Roos, H.-G.; Linß, T., Gradient recovery for singularly perturbed boundary value problems II: two-dimensional convection – diffusion, M3as, 11, 7, 1169-1179, (2001) · Zbl 1014.65122
[87] Roos, H.-G.; Skalický, T., A comparison of the finite element method on shishkin and gartland-type meshes for convection – diffusion problems, Cwi q, 10, 3-4, 277-300, (1997) · Zbl 0908.65099
[88] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical methods for singularly perturbed differential equations, Springer series in computational mathematics, vol. 24, (1996), Springer Berlin
[89] H.-G. Roos, H. Zarin, The streamline-diffusion method for a convection – diffusion problem with a point source, J. Comput. Appl. Math. 150 (1) (2003) 109-128 · Zbl 1016.65054
[90] Samarskii, A.A., Monotonic difference schemes for elliptic and parabolic equations in the case of a non-selfadjoint elliptic operator, Comput. math. math. phys., 5, 3, 212-217, (1965) · Zbl 0153.18403
[91] Schneider, D.; Roos, H.-G.; Linß, T., Uniform convergence of an upwind finite element method on layer-adapted grids, Comput. methods appl. mech. engrg., 190, 35-36, 4519-4530, (2001) · Zbl 0997.76049
[92] G.I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Second doctorial thesis, Keldysh Institute, Moscow, 1990 (in Russian)
[93] Shishkin, G.I., Discrete approximation of singularly perturbed elliptic and parabolic equations, (1992), Russian Academy of Sciences, Ural Section Ekaterinburg, (in Russian) · Zbl 0808.65102
[94] Shishkin, G.I., A difference approximation of a singularly perturbed boundary-value problem for quasilinear elliptic equations degenerating into first-order equations, Comput. math. math. phys., 32, 4, 467-480, (1992) · Zbl 0808.65102
[95] Stynes, M.; O’Riordan, E., A uniformly convergent Galerkin method on a shishkin mesh for a convection – diffusion problem, J. math. anal. appl., 214, 1, 36-54, (1997) · Zbl 0917.65088
[96] Stynes, M.; Roos, H.-G., The midpoint upwind scheme, Appl. numer. math., 23, 3, 361-374, (1997) · Zbl 0877.65055
[97] Stynes, M.; Tobiska, L., Error estimates and numerical experiments for streamline-diffusion-type methods on arbitrary and shishkin meshes, Cwi q, 10, 3-4, 337-352, (1997) · Zbl 0908.65069
[98] Stynes, M.; Tobiska, L., A finite difference analysis of a streamline diffusion method on a shishkin mesh, Numer. algorithms, 18, 3-4, 337-360, (1998) · Zbl 0916.65108
[99] Stynes, M.; Tobiska, L., Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection – diffusion problem with exponential layers, East – west J. numer. anal., 9, 1, 59-76, (2001) · Zbl 0986.65109
[100] M. Stynes, L. Tobiska, The SDFEM for a convection – diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy, Preprint 9/2002, Fak. Math., Otto-von-Guericke-Uni. Magdeburg, 2002 · Zbl 1055.65121
[101] Sun, G.; Stynes, M., Finite-element methods for singularly perturbed high-order elliptic two- point boundary value problems. II: convection – diffusion-type problems, IMA J. numer. anal., 15, 2, 197-219, (1995) · Zbl 0824.65077
[102] Tobiska, T.; Matthies, G.; Stynes, M., Convergence properties of the streamline-diffusion finite element on a shishkin mesh for singularly perturbed elliptic equations with exponential layers, (), 123-132
[103] Vulanović, R., On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Zb. rad., prir.-mat. fak., univ. novom sadu, ser. mat., 13, 187-201, (1983) · Zbl 0573.65064
[104] R. Vulanović, Mesh construction for discretization of singularly perturbed boundary value problems, Ph.D. thesis, University of Novi Sad, 1986
[105] Vulanović, R., Non-equidistant generalizations of the gushchin-shchennikov scheme, Z. angew. math. mech., 67, 625-632, (1987) · Zbl 0636.65077
[106] Vulanović, R., A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing, 41, 1-2, 97-106, (1989) · Zbl 0664.65082
[107] Vulanović, R., A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. numer. anal., 21, 1, 349-366, (2001) · Zbl 0989.65081
[108] Ženı́šek, A.; Vanmaele, M., Applicability of the bramble – hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements, J. comput. appl. math., 63, 1-3, 109-122, (1995) · Zbl 0847.41003
[109] Ženı́šek, A.; Vanmaele, M., The interpolation theorem for narrow quadrilateral isoparametric finite elements, Numer. math., 72, 1, 123-141, (1995) · Zbl 0839.65005
[110] Wahlbin, L.B., Superconvergence in Galerkin finite element methods, Lecture notes in mathematics, vol. 1605, (1995), Springer Berlin · Zbl 0826.65091
[111] D. Wollstein, Untersuchung einer FVM-Diskretisierung von Konvektions-Diffusions-Gleichungen auf grenzschichtangepassten Gittern, Diplomarbeit, Technische Universität Dresden, 2000 (in German)
[112] Wollstein, D.; Linß, T.; Roos, H.-G., A uniformly accurate finite volume discretization for a convection – diffusion problem, Elec. trans. numer. anal., 13, 1-11, (2002) · Zbl 1024.65108
[113] Zhang, Zh., Finite element superconvergent approximation for one-dimensional singularly perturbed problems, Numer. methods partial differ. equations, 18, 374-395, (2002) · Zbl 1002.65088
[114] Zh. Zhang, Finite element superconvergence on Shishkin mesh for 2-d convection – diffusion problems, Math. Comp. (in press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.