×

zbMATH — the first resource for mathematics

Generalized vector quasi-equilibrium problems with applications. (English) Zbl 1022.90023
Summary: We consider the generalized vector quasi-equilibrium problem with or without involving \(\Phi\)-condensing maps and prove the existence of its solution by using known fixed point and maximal element theorems. As applications of our results, we derive some existence results for a solution to the vector quasi-optimization problem for nondifferentiable functions and vector quasi-saddle point problem.

MSC:
90C29 Multi-objective and goal programming
91A40 Other game-theoretic models
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ansari, Q.H., Vector equilibrium problems and vector variational inequalities, (), 1-16 · Zbl 1198.90343
[2] Ansari, Q.H.; Konnov, I.V.; Yao, J.-C., On generalized vector equilibrium problems, Nonlinear anal., 47, 543-554, (2001) · Zbl 1042.90642
[3] Ansari, Q.H.; Oettli, W.; Schläger, D., A generalization of vectorial equilibria, Math. methods oper. res., 46, 147-152, (1997) · Zbl 0889.90155
[4] Ansari, Q.H.; Siddiqi, A.H.; Wu, S.Y., Existence and duality of generalized vector equilibrium problems, J. math. anal. appl., 259, 115-126, (2001) · Zbl 1018.90041
[5] Ansari, Q.H.; Yao, J.-C., An existence result for the generalized vector equilibrium problem, Appl. math. lett., 12, 8, 53-56, (1999) · Zbl 1014.49008
[6] Ansari, Q.H.; Yao, J.-C., Nondifferentiable and nonconvex vector optimization problems, J. optim. theory appl., 106, 487-500, (2000) · Zbl 0970.90092
[7] Q.H. Ansari, J.-C. Yao, On vector quasi-equilibrium problems, in: A. Maugeri, F. Giannessi (Eds.), Variational Problems and Equilibria, Kluwer, Dordrecht, in press · Zbl 1069.49003
[8] Berge, C., Topological spaces, (1963), Oliver & Boyd Edinburgh · Zbl 0114.38602
[9] Bianchi, M.; Hadjisavvas, N.; Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. optim. theory appl., 92, 527-542, (1997) · Zbl 0878.49007
[10] Border, K.C., Fixed point theorems with applications to economics and game theory, (1985), Cambridge University Press Cambridge · Zbl 0558.47038
[11] Ding, X.P., Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. math. appl., 39, 13-21, (2000) · Zbl 0956.54024
[12] Fabián Flores-Bazán, Fernando Flores-Bazán, Vector equilibrium problems under asymptotic analysis, J. Global Optim., to appear
[13] Fu, J., Simultaneous vector variational inequalities and vector implicit complementarity problems, J. optim. theory appl., 93, 141-151, (1997) · Zbl 0901.90169
[14] Georgiev, P.G.; Tanaka, T., Vector-valued set-valued variants of Ky Fan’s inequality, J. nonlinear convex anal., 1, 245-254, (2000) · Zbl 0987.49010
[15] ()
[16] Hadjisavvas, N.; Schaible, S., From scalar to vector equilibrium problems in the quasi monotone case, J. optim. theory appl., 96, 297-309, (1998) · Zbl 0903.90141
[17] Konnov, I.V.; Yao, J.-C., Existence of solutions for generalized vector equilibrium problems, J. math. anal. appl., 233, 328-335, (1999) · Zbl 0933.49004
[18] Lee, G.M.; Kim, D.S.; Lee, B.S., On noncooperative vector equilibrium, Indian J. pure appl. math., 27, 735-739, (1996) · Zbl 0858.90141
[19] Lee, G.M.; Kim, D.S.; Lee, B.S.; Yen, N.D., Vector variational inequality as a tool for studying vector optimization problems, Nonlinear anal., 34, 745-765, (1998) · Zbl 0956.49007
[20] Lin, L.-J.; Park, S.; Yu, Z.-T., Remarks on fixed points, maximal elements, and equilibria of generalized games, J. math. anal. appl., 233, 581-596, (1999) · Zbl 0949.91004
[21] Luc, D.T.; Tan, N.X.; Tinh, P.N., Convex vector functions and their subdifferential, Acta math. Vietnam., 23, 107-127, (1998) · Zbl 0906.49007
[22] Oettli, W., A remark on vector valued equilibria and generalized monotonicity, Acta math. Vietnam., 22, 213-221, (1997) · Zbl 0914.90235
[23] Oettli, W.; Schläger, D., Generalized vectorial equilibria and generalized monotonicity, (), 145-154 · Zbl 0904.90150
[24] Oettli, W.; Schläger, D., Existence of equilibria for monotone multivalued mappings, Math. methods oper. res., 48, 219-228, (1998) · Zbl 0930.90077
[25] Petryshyn, W.V.; Fitzpatrick, P.M., Fixed point theorems of multivalued noncompact inward maps, J. math. anal. appl., 46, 756-767, (1974) · Zbl 0287.47038
[26] Petryshyn, W.V.; Fitzpatrick, P.M., Fixed point theorems of multivalued noncompact acyclic mappings, Pacific J. math., 54, 17-23, (1974) · Zbl 0312.47047
[27] Song, W., Vector equilibrium problems with set-valued mappings, (), 403-422 · Zbl 0993.49011
[28] Tan, N.X.; Tinh, P.N., On the existence of equilibrium points of vector functions, Numer. funct. anal. optim., 19, 141-156, (1998) · Zbl 0896.90161
[29] Yuan, G.X.-Z.; Isac, G.; Tan, K.-K.; Yu, J., The study of minimax inequalities, abstract economics and applications to variational inequalities and Nash equilibria, Acta appl. math., 54, 135-166, (1998) · Zbl 0921.47047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.