[1] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems magazine 19, No. 15, 59-70 (1999) |

[2] |
Dayawansa, W. P.; Martin, C. F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE trans. Automat. control 44, No. 4, 751-760 (1999) · Zbl 0960.93046 |

[3] |
Wicks, M. A.; Peleties, P.; Decarlo, R. A.: Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Eur. J. Control 4, 140-147 (1998) · Zbl 0910.93062 |

[4] |
Morse, A. S.: Supervisory control of families of linear set-point controllers--part 1: exact matching. IEEE trans. Automat. control 41, No. 10, 1413-1431 (1996) · Zbl 0872.93009 |

[5] |
B. Hu, G. Zhai, A.N. Michel, Hybrid output feedback stabilization of two-dimensional linear control systems, Proceedings of the 2000 American Control Conference, 2000, pp. 2184--2188. |

[6] |
Hu, B.; Michel, A. N.: Stability analysis of digital feedback control systems with time-varying sampling periods. Automatica 36, 897-905 (2000) · Zbl 0941.93034 |

[7] |
J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, pp. 2655--2660. |

[8] |
G. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, Proceedings of the 2000 American Control Conference, 2000, pp. 200--204. · Zbl 1022.93043 |

[9] |
Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hydrid systems. IEEE trans. Automat. control 43, No. 4, 475-482 (1998) · Zbl 0904.93036 |

[10] |
Ye, H.; Michel, A. N.; Hou, L.: Stability theory for hybrid dynamical systems. IEEE trans. Automat. control 43, No. 4, 461-474 (1998) · Zbl 0905.93024 |

[11] |
S. Pettersson, B. Lennartson, LMI for stability and robustness of hybrid systems, Proceedings of the 1997 American Control Conference, 1997, pp. 1714--1718. |

[12] |
M.A. Wicks, P. Peleties, R.A. DeCarlo, Construction of piecewise Lyapunov functions for stabilizing switched systems, Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, pp. 3492--3497. |

[13] |
B. Hu, X. Xu, A.N. Michel, P.J. Antsaklis, Stability analysis for a class of nonlinear switched systems, Proceedings of the 38th IEEE Conference on Decision and Control, 1999, pp. 4374--4379. |

[14] |
J.P. Hespanha, Logic-based switching algorithms in control, Ph.D. Dissertation, Yale University, 1998. |

[15] |
G. Zhai, B. Hu, K. Yasuda, A.N. Michel, Piecewise Lyapunov functions for switched systems with average dwell time, Proceedings of the 2000 Asian Control Conference, 2000, pp. 229--233. |

[16] |
Gahinet, P.; Apkarian, P.: A linear matrix inequality approach to H$\infty $control. Int. J. Robust nonlinear control 4, 421-448 (1994) · Zbl 0808.93024 |

[17] |
Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004 |

[18] |
G. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox for Use with Matlab, the MathWorks Inc., 1995. |

[19] |
Miller, R. K.; Michel, A. N.: Ordinary differential equations. (1982) · Zbl 0552.34001 |

[20] |
Narendra, K. S.; Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE trans. Automat. control 39, No. 12, 2469-2471 (1994) · Zbl 0825.93668 |

[21] |
Van Der Schaft, A. J.: L2-gain analysis of nonlinear systems and nonlinear state feedback H$\infty $control. IEEE trans. Automat. control 37, No. 6, 770-784 (1992) · Zbl 0755.93037 |

[22] |
Khalil, H. K.: Nonlinear systems. (1996) · Zbl 0842.93033 |