×

Almost primality of group orders of elliptic curves defined over small finite fields. (English) Zbl 1023.11032

This is an interesting paper. If \(E\) is an elliptic curve defined over a small field \(\text{GF}(q)\) and \(p\) is any prime, the author gives a formula for determining the probability that the order of the quotient group \(E(\text{GF}(q^p))/E(\text{GF}(q))\) is prime. This study is motivated by certain problems arising from public key cryptography.

MSC:

11G20 Curves over finite and local fields
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)

References:

[1] DOI: 10.1090/S0025-5718-1967-0223320-1 · doi:10.1090/S0025-5718-1967-0223320-1
[2] ”Digital Signature Standard” (2000)
[3] Hardy G. H., An introduction to the theory of numbers, (1979) · Zbl 0423.10001
[4] DOI: 10.1090/S0025-5718-1987-0866109-5 · doi:10.1090/S0025-5718-1987-0866109-5
[5] Koblitz N., Algebraic aspects of cryptography (1998) · Zbl 0890.94001 · doi:10.1007/978-3-662-03642-6
[6] Marcus D. A., Number fields (1977) · doi:10.1007/978-1-4684-9356-6
[7] DOI: 10.1016/0097-3165(87)90003-3 · Zbl 0632.14021 · doi:10.1016/0097-3165(87)90003-3
[8] DOI: 10.1023/A:1008306223194 · Zbl 0997.94017 · doi:10.1023/A:1008306223194
[9] DOI: 10.1090/S0025-5718-1983-0679454-X · doi:10.1090/S0025-5718-1983-0679454-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.