Bravyi, E.; Hakl, R.; Lomtatidze, A. On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type. (English) Zbl 1023.34054 Czech. Math. J. 52, No. 4, 673-690 (2002). Summary: On the segment \(I=[a,b]\) consider the problem \(u'(t)=f(u)(t), \quad u(a)=c\), where \(f: C(I,\mathbb{R}) \to L (I,\mathbb{R})\) is a continuous, in general nonlinear operator satisfying Carathéodory condition, and \(c \in \mathbb{R}\). Sufficient conditions guaranteeing the solvability and unique solvability of the considered problem are established. Examples verifying the optimality of obtained results are given, too. Cited in 8 Documents MSC: 34K05 General theory of functional-differential equations Keywords:nonlinear functional-differential equation; initial value problem; non-Volterra-type operator PDF BibTeX XML Cite \textit{E. Bravyi} et al., Czech. Math. J. 52, No. 4, 673--690 (2002; Zbl 1023.34054) Full Text: DOI EuDML References: [1] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations. Nauka, Moscow, 1991. · Zbl 0725.34071 [2] S. R. Bernfeld and V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems. Academic Press Inc., New York and London, 1974. · Zbl 0286.34018 [3] J. Blaz: Sur l’existence et l’unicité de la solution d’une equation differentielle á argument retardé. Ann. Polon. Math. 15 (1964), 9-14. · Zbl 0129.07702 [4] E. Bravyi, R. Hakl and A. Lomtatidze: Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations. Czechoslovak Math. J 52(127) (2002), 513-530. · Zbl 1023.34055 [5] R. D. Driver: Existence theory for a delay-differential system. Contrib. Diff. Equations 1 (1963), 317-336. · Zbl 0126.10102 [6] J. Hale: Theory of Functional Differential Equations. Springer-Verlag, New York-Heidelberg-Berlin, 1977. · Zbl 0352.34001 [7] Sh. Gelashvili and I. Kiguradze: On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differential Equations Math. Phys. 5 (1995), 1-113. · Zbl 0902.34059 [8] I. Kiguradze and B. Půža: On boundary value problems for systems of linear functional differential equations. Czechoslovak Math. J. 47(122) (1997), 341-373. · Zbl 0930.34047 [9] I. Kiguradze and B. Půža: On boundary value problems for functional differential equations. Mem. Differential Equations Math. Phys. 12 (1997), 106-113. · Zbl 0909.34054 [10] I. Kiguradze and Z. Sokhadze: Concerning the uniqueness of solution of the Cauchy problem for functional differential equations. Differentsial’nye Uravneniya 31 (1995), 1977-1988. · Zbl 0874.34055 [11] I. Kiguradze and Z. Sokhadze: Existence and continuability of solutions of the initial value problem for the system of singular functional differential equations. Mem. Differential Equations Math. Phys. 5 (1995), 127-130. · Zbl 0880.34069 [12] I. Kiguradze and Z. Sokhadze: On the Cauchy problem for singular evolution functional differential equations. Differentsial’nye Uravneniya 33 (1997), 48-59. · Zbl 0909.34059 [13] I. Kiguradze and Z. Sokhadze: On singular functional differential inequalities. Georgian Math. J. 4 (1997), 259-278. · Zbl 0876.34073 [14] I. Kiguradze and Z. Sokhadze: On global solvability of the Cauchy problem for singular functional differential equations. Georgian Math. J. 4 (1997), 355-372. · Zbl 0882.34066 [15] I. Kiguradze and Z. Sokhadze: On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations. Fasc. Math. (1998), 71-92. · Zbl 0906.34049 [16] V. Lakshmikantham: Lyapunov function and a basic inequality in delay-differential equations. Arch. Rational Mech. Anal. 10 (1962), 305-310. · Zbl 0109.31203 [17] A. I. Logunov and Z. B. Tsalyuk: On the uniqueness of solution of Volterra type integral equations with retarded argument. Mat. Sb. 67 (1965), 303-309. · Zbl 0154.37401 [18] W. L. Miranker: Existence, uniqueness and stability of solutions of systems of nonlinear difference-differential equations. J. Math. Mech. 11 (1962), 101-107. · Zbl 0114.04201 [19] A. D. Myshkis: General theory of differential equations with retarded argument. Uspekhi Mat. Nauk 4 (1949), 99-141. · Zbl 0035.17801 [20] A. D. Myshkis and L. E. Elsgolts: State and problems of theory of differential equations with deviated argument. Uspekhi Mat. Nauk 22 (1967), 21-57. [21] A. D. Myshkis and Z. B. Tsalyuk: On nonlocal continuability of solutions to differential equaitons with retarded argument. Differentsial’nye Uravneniya 5 (1969), 1128-1130. · Zbl 0184.12301 [22] W. Rzymowski: Delay effects on the existence problems for differential equations in Banach space. J. Differential Equations 32 (1979), 91-100. · Zbl 0423.34090 [23] Š. Schwabik, M. Tvrdý and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia, Praha, 1979. · Zbl 0417.45001 [24] Z. Sokhadze: On a theorem of Myshkis-Tsalyuk. Mem. Differential Equations Math. Phys. 5 (1995), 131-132. · Zbl 0866.34053 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.