zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical solution of sixth-order boundary value problems by the modified decomposition method. (English) Zbl 1023.65074
Summary: A fast and accurate algorithm is developed for the solution of sixth-order boundary value problems with two-point boundary conditions. A modified form of the Adomian decomposition method is applied to construct the numerical solution for such problems. The scheme is tested on one linear and two nonlinear problems. The results demonstrate reliability and efficiency of the algorithm developed.

65L10Boundary value problems for ODE (numerical methods)
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
34B05Linear boundary value problems for ODE
34B15Nonlinear boundary value problems for ODE
Full Text: DOI
[1] Toomore, J.; Zahn, J. R.; Latour, J.; Spiegel, E. A.: Stellar convection theory II: Single-mode study of the second convection zone in A-type stars. Astrophys. J. 207, 545-563 (1976)
[2] Boutayeb, A.; Twizell, E. H.: Numerical methods for the solution of special sixth-order boundary value problems. Int. J. Comput. math. 45, 207-233 (1992) · Zbl 0773.65055
[3] Twizell, E. H.; Boutayeb, A.: Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Bénard layer eigenvalue problems. Proc. roy. Soc. lond. A 431, 433-450 (1990) · Zbl 0722.65042
[4] Glatzmaier, G. A.: Numerical simulations of stellar convection dynamics at the base of the convection zone. Geophys. fluid dynamics 31, 137-150 (1985)
[5] Siddiqi, S. S.; Twizell, E. H.: Spline solutions of linear sixth-order boundary value problems. Int. J. Comput. math. 60, 295-304 (1996) · Zbl 1001.65523
[6] Baldwin, P.: Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods. Phil. trans. Roy. soc. Lond. A 322, 281-305 (1987) · Zbl 0625.76043
[7] Baldwin, P.: A localized instability in a Bénard layer. Applicable anal. 24, 117-156 (1987) · Zbl 0588.76076
[8] Chandrasekhar, S.: Hydrodynamics and hydromagnetic stability. (1981)
[9] Agarwal, R. P.: Boundary value problems for high ordinary differential equations. (1986) · Zbl 0619.34019
[10] Chawla, M. M.; Katti, C. P.: Finite difference methods for two-point boundary value problems involving higher order differential equations. Bit 19, 27-33 (1979) · Zbl 0401.65053
[11] E.H. Twizell, Numerical methods for sixth-order boundary value problems, in: Numerical Mathematics, Singapore, 1988, International Series of Numerical Mathematics, vol. 86, Birkhäuser, Basel, 1988, pp. 495--506
[12] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[13] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053
[14] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[15] Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model. Appl. math. Comput. 100, 13-25 (1999) · Zbl 0953.92026
[16] Wazwaz, A. M.: A reliable modification of Adomian’s decomposition method. Appl. math. Comput. 102, 77-86 (1999) · Zbl 0928.65083
[17] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, 33-51 (2000) · Zbl 1023.65108
[18] Cherrauault, Y.; Saccomandi, G.; Some, B.: New results for convergence of Adomian’s method applied to integral equations. Math. comput. Modelling 16, No. 2, 85-93 (1992) · Zbl 0756.65083