zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A reliable algorithm for solving boundary value problems for higher-order integro-differentiable equations. (English) Zbl 1023.65150
Summary: The aim of this paper is to present an efficient analytical and numerical procedure for solving boundary value problems for higher-order integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. The analysis is accompanied by numerical examples. The results demonstrate reliability and efficiency of the proposed algorithm.

MSC:
65R20Integral equations (numerical methods)
45G10Nonsingular nonlinear integral equations
45J05Integro-ordinary differential equations
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, R. P.: Boundary value problems for high ordinary differential equations. (1986) · Zbl 0619.34019
[2] Morchalo, J.: On two point boundary value problem for integro-differential equation of second order. Fasc. math. 9, 51-56 (1975) · Zbl 0363.45005
[3] Morchalo, J.: On two point boundary value problem for integro-differential equation of higher order. Fasc. math. 9, 77-96 (1975) · Zbl 0363.45006
[4] Agarwal, R. P.: Boundary value problems for higher order integro-differential equations nonlinear analysis. Theory, meth. Appl. 7, No. 3, 259-270 (1983) · Zbl 0505.45002
[5] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[6] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053
[7] A.M. Wazwaz, A First Course in Integral Equations, World Scientific, River Edge, NJ, 1997 · Zbl 0924.45001
[8] Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model. Appl. math. Comput. 100, 13-25 (1999) · Zbl 0953.92026
[9] Wazwaz, A. M.: A reliable modification of Adomian’s decomposition method. Appl. math. Comput. 92, 1-7 (1998)
[10] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, 33-51 (2000) · Zbl 1023.65108
[11] Abu-Sitta, A. M. M.: A note on a certain boundary-layer equation. Appl. math. Comput. 4, 73-77 (1994) · Zbl 0811.34013
[12] Weyl, H.: On the differential equations of the simplest boundary layer problems. Ann. math. 43, No. 2, 381-407 (1942) · Zbl 0061.18002
[13] Wazwaz, A. M.: A study on a boundary-layer equation arising in an incompressible fluid. Appl. math. Comput. 87, 199-204 (1997) · Zbl 0904.76067
[14] Boyd, J.: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. math. 11, No. 3, 299-313 (1997)
[15] Wazwaz, A. M.: The modified decomposition method and Padé approximants for solving Thomas--Fermi equation. Appl. math. Comput. 105, No. 1, 11-19 (1999) · Zbl 0956.65064
[16] Baker, G. A.; Gravis-Morris, P.: Essentials of Padé approximants. (1996)