zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical and numerical models for coupling surface and groundwater flows. (English) Zbl 1023.76048
Summary: We present some results on coupling Navier-Stokes with shallow water equations for surface flows, and with Darcy’s equation for groundwater flows. We discuss suitable interface conditions and show the well-posedness of the coupled problem in the case of a linear Stokes problem. An iterative method is proposed to compute the solution. At each step this method requires the solution of one problem in the fluid part and one in the porous medium. Finally, we introduce Steklov-Poincaré equation associated with the coupled problem.

76S05Flows in porous media; filtration; seepage
76D05Navier-Stokes equations (fluid dynamics)
35Q35PDEs in connection with fluid mechanics
86A05Hydrology, hydrography, oceanography
Full Text: DOI
[1] Bear, J.: Hydraulics of groundwater. (1979)
[2] Beavers, G. S.; Joseph, D. D.: Boundary conditions at a naturally permeable wall. J. fluid mech. 30, 197-207 (1967)
[3] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO anal. Numér. 8, 129-151 (1974) · Zbl 0338.90047
[4] E. Campana, A. Iafrati, A domain decomposition approach for unsteady free surface flows, Preprint · Zbl 1025.76022
[5] M. Discacciati, Modelli di accoppiamento fra le equazioni di Stokes e quelle di Darcy per lo studio di problemi di idrodinamica, Degree thesis, Università degli Studi dell’Insubria, Como, Italy, 2001 (in Italian)
[6] M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, submitted CEPFL Institut de Mathématiques, Internal Report N. 02. 2002, 2002 · Zbl 1254.76051
[7] Fontana, L.; Miglio, E.; Quarteroni, A.; Saleri, F.: A finite element method for 3D hydrostatic water flows. Comput. vis. Sci. 2, No. 2--3, 85-93 (1999) · Zbl 1067.76566
[8] Jäger, W.; Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. scuola norm. Sup. Pisa cl. Sci. 23, 403-465 (1996) · Zbl 0878.76076
[9] Jäger, W.; Mikelić, A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. math. 60, 1111-1127 (2000) · Zbl 0969.76088
[10] Jones, I. P.: Low Reynolds number flow past a porous spherical shell. Proc. camb. Philos. soc. 73, 231-238 (1973) · Zbl 0262.76061
[11] Lions, J. L.; Magenes, E.: Problèmes aux limites non homogènes et applications, 1. (1968) · Zbl 0165.10801
[12] E. Miglio, Mathematical and numerical modelling for enviromental applications, Ph.D. Thesis, Università degli Studi di Milano, Politecnico di Milano, Milan, Italy, 2000
[13] E. Miglio, A. Quarteroni, F. Saleri, Coupling of free surface and groundwater flows, Comput. Fluids, accepted · Zbl 1035.76051
[14] Miglio, E.; Quarteroni, A.; Saleri, F.: Finite element approximation of quasi-3D shallow water equations. Comput. methods appl. Mech. engrg. 174, No. 3--4, 355-369 (1999) · Zbl 0958.76046
[15] Nield, D. A.; Bejan, A.: Convection in porous media. (1999) · Zbl 0924.76001
[16] Payne, L. E.; Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. math. Pures appl. (9) 77, No. 4, 317-354 (1998) · Zbl 0906.35067
[17] Quarteroni, A.; Valli, A.: Domain decomposition methods for partial differential equations. (1999) · Zbl 0931.65118
[18] Quarteroni, A.; Valli, A.: Numerical approximation of partial differential equations. (1994) · Zbl 0803.65088
[19] Wood, W. L.: Introduction to numerical methods for water resources. (1993) · Zbl 0801.76001