zbMATH — the first resource for mathematics

A Cantor-Bernstein theorem for \(\sigma \)-complete MV-algebras. (English) Zbl 1024.06003
Summary: The Cantor-Bernstein theorem was extended to \(\sigma \)-complete Boolean algebras by R. Sikorski and A. Tarski. Chang’s MV-algebras are a nontrivial generalization of Boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as Boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to \(\sigma \)-complete MV-algebras, and compare it to a related result proved by J. Jakubík for certain complete MV-algebras.

06D35 MV-algebras
03G20 Logical aspects of Łukasiewicz and Post algebras
Full Text: DOI EuDML
[1] R. Cignoli and D. Mundici: An invitation to Chang’s MV-algebras. Advances in Algebra and Model Theory, M. Droste, R. Göbel (eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171-197. · Zbl 0935.06010
[2] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic. Vol. 7. Kluwer Academic Publishers, Dordrecht, 1999.
[3] W. Hanf: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5 (1957), 205-217. · Zbl 0081.26101
[4] J. Jakubík: Cantor-Bernstein theorem for \(MV\)-algebras. Czechoslovak Math. J. 49(124) (1999), 517-526. · Zbl 1004.06011
[5] S. Kinoshita: A solution to a problem of Sikorski. Fund. Math. 40 (1953), 39-41. · Zbl 0052.18902
[6] A. Levy: Basic Set Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1979.
[7] D. Mundici: Interpretation of AF \(C^{*}\)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. · Zbl 0597.46059
[8] R. Sikorski: Boolean Algebras. Springer-Verlag. Ergebnisse Math. Grenzgeb., Berlin, 1960. · Zbl 0087.02503
[9] R. Sikorski: A generalization of a theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144 and 242. · Zbl 0037.31801
[10] A. Tarski: Cardinal Algebras. Oxford University Press, New York, 1949. · Zbl 0041.34502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.