Bugeaud, Yann Lower bounds for the greatest prime factor of \(ax^m+by^n\). (English) Zbl 1024.11019 Acta Math. Inform. Univ. Ostrav. 6, No. 1, 53-57 (1998). In this survey paper five theorems related to lower bounds for the magnitude of the greatest prime factor of the expression in the title are quoted. Theorem 6 gives an upper bound. The proofs are based upon Baker’s method and several earlier arguments of Győry, Kiss, Sárközy, Schinzel, Shorey and others. Reviewer: Bela Brindza (Debrecen) Cited in 1 Document MSC: 11D75 Diophantine inequalities 11J86 Linear forms in logarithms; Baker’s method 11J25 Diophantine inequalities Keywords:greatest prime factor; binary form PDFBibTeX XMLCite \textit{Y. Bugeaud}, Acta Math. Inform. Univ. Ostrav. 6, No. 1, 53--57 (1998; Zbl 1024.11019) Full Text: EuDML References: [1] G. D. Birkhoff, H. S. Vandiver: On the integral divisors of \(a^n - b^n\). Ann. Math. 5 (1904), 173-180. · JFM 35.0205.01 · doi:10.2307/2007263 [2] Y. Bugeaud: Bounds for the solutions of superelliptic equations. Compositio Math. 107 (1997), 187-219. · Zbl 0886.11016 · doi:10.1023/A:1000130114331 [3] Y. Bugeaud: On the greatest prime factor of \(ax^m + by^n\). Number Theory (ed. by K. Gyory, A. Peto and V. T. Sos), Walter de Gruyter, Berlin - New York (1998), 115-122. · Zbl 0970.11010 [4] Y. Bugeaud: Sur le plus grand facteur premier de \(ax^m + by^n\). C. R. Acad. Sci. Paris 326 (1998), 661-665. · Zbl 0922.11028 · doi:10.1016/S0764-4442(98)80026-8 [5] Y. Bugeaud, K. Gyory: Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67-80. · Zbl 0861.11023 [6] Y. Bugeaud, K. Gyory: Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arith. 74 (1996), 273-292. · Zbl 0861.11024 [7] K. Gyory: On the greatest prime factors of decomposable forms at integer points. Ann. Acad. Sci. Fenn. Ser. A1 4 (1979), 341-355. · Zbl 0402.10017 [8] K. Gyory P. Kiss, A. Schinzel: A note on Lucas and Lehmer sequences. Colloq. Math. 45 (1981), 75-80. · Zbl 0487.10010 [9] K. Gyory, A. Sarkozy: On prime factors of integers of the form \((ab+1)(bc+1)(ca + 1)\). Acta Arith. 79 (1997), 163-171. · Zbl 0869.11071 [10] S. V. Kotov: Ueber die maximale Norm der Idealteiler des Polynoms \(ax^m +by^n\) mit den algebraischen Koeffizienten. Acta Arith. 31 (1976), 219-230. · Zbl 0352.12002 [11] K. Mahler: On the greatest prime factor of \(ax^m + by^n\). Nieuw Archief voor Wisk. 3 (1953), 113-132. · Zbl 0050.26804 [12] T. N. Shorey: On the greatest prime factor of \((ax^m + by^n)\). Acta Arith. 36 (1980), 21-25. · Zbl 0431.10010 [13] T. N. Shorey A. J. van der Poorten R. Tijdeman, A. Schinzel: Applications of the Gelfond-Baker method to diophantine equations. Advances in transcendence theory, Academic Press, London and New-York 1977. · Zbl 0371.10015 [14] T. N. Shorey, R. Tijdeman: Exponential Diophantine Equations. Cambridge University Press, Cambridge, 1986. · Zbl 0606.10011 [15] P. Voutier: On primitive divisors of Lucas and Lehmer sequences III. Math. Proc. Cambridge Phil. Soc. 123 (1998), 407-419. · Zbl 1032.11007 · doi:10.1017/S0305004197002223 [16] K. Yu, L. Hung: On binary recurrence sequences. Indag. Math. N. S. 6 (1995), 341-354. · Zbl 0853.11014 · doi:10.1016/0019-3577(95)93201-K [17] K. Zsigmondy: Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892), 256-284. · JFM 24.0176.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.