Sasaki, Ryuji An arithmetic of modular function fields of degree two. (English) Zbl 1024.11031 Acta Math. Inform. Univ. Ostrav. 7, No. 1, 79-105 (1999). The aim of this article is to generalize results on fields of modular functions of higher level from [G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press (1971; Zbl 0221.10029)] to fields of Siegel modular functions of degree two. The method uses explicit quadratic relations for theta-functions. It should be noted that the final result (Theorem 3) follows from a general reciprocity law proved by G. Shimura [Acta Math. 141, 35-71 (1978; Zbl 0402.10030)]. However, the author’s explicit approach can also be of interest. Reviewer: Jan Nekovář (Cambridge) MSC: 11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms 14K25 Theta functions and abelian varieties Keywords:Siegel modular forms; theta functions; Kummer surfaces Citations:Zbl 0221.10029; Zbl 0402.10030 × Cite Format Result Cite Review PDF Full Text: EuDML References: [1] H. F. Baker: Abelian functions. Cambridge, 1897. · Zbl 0848.14012 [2] O. Bolza: Darstellung der rational ganzen Invarianten der Binarform sechsten Grades durch die Nullwerte der zugehorigen \(\theta\)-Functionen. Math. Ann., 30:478-495, 1887. · JFM 19.0122.02 [3] A. Coble: Algebraic geometry and theta functions. Amer. Math. Soc. Coll. Publ. 10, Providence, 1929 · JFM 55.0808.02 [4] I. Dolgachev D. Ortland: Point set in projective spaces and theta funcions. Asterisque, 165, 1988. [5] J. Igusa: On Siegel modular forms of genus two. Amer. J. Math., 84:175-200, 1962; II, ibid. 86:392-412, 1964. [6] J. Igusa: On the graded rings of theta-constants. Amer. J. Math., 86:219-246, 1964, ILibid. 88:221-236, 1966. [7] J. Igusa: Modular forms and projective invariants. Amer. J. Math., 89:817-855, 1967. · Zbl 0159.50401 · doi:10.2307/2373243 [8] J. Igusa: Theta functions. Springer-Verlag, Berlin-Heiderberg-New York, 1972. · Zbl 0251.14016 [9] S. Koizumi: Theta relations and projective normality of abelian varieties. Amer. J. Math., 98:865-889, 1976. · Zbl 0347.14023 · doi:10.2307/2374034 [10] A. Krazer: Thetafunktionen. Chelsea Pub. Co. NewYork, 1970. · Zbl 0212.42901 [11] L. Kronecker: Zur Theorie der elliptischen Functionen XI. Math. Werke IV, Chelsea Pub. Co. New York, 1968. · JFM 22.0471.01 [12] D. Mumford: On the equations defining abelian varieties I-III. Invent. Math., 1:287-354, 1966; 3:75-135, 3:215-244, 1967. · Zbl 0219.14024 · doi:10.1007/BF01389737 [13] D. Mumford: Abelian varieties. Oxford Univ. Press, 1970. · Zbl 0223.14022 [14] R. Sasaki: Modular forms vanishing at the reducible points of the Siegel upper-half space. J. reine angew. Math., 345:111-121, 1983. · Zbl 0513.10027 · doi:10.1515/crll.1983.345.111 [15] R. Sasaki: Some remarks on the moduli space of principally polarized abelian varieties with level (2,4) structure. Comp. Math. 85:87-97, 1993. · Zbl 0785.14026 [16] R. Sasaki: Moduli of curves of genus two and the special orthogonal group of degree three. · Zbl 0967.14016 · doi:10.2206/kyushujm.53.333 [17] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Princeton Univ. Press, 1971. · Zbl 0221.10029 [18] H. Weber: Anwendung der Thetafunctionen zweier Veranderlicher auf die Theorie der Bewegung eines festen Korpers in einer Flüssigkeit. Math. Annalen., 14:173-206, 1879. · JFM 10.0643.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.