zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Even order nonlinear eigenvalue problems on a measure chain. (English) Zbl 1024.34021
Summary: The authors consider the even-order nonlinear eigenvalue problem $$(-1)^m u^{\Delta^{2m}}(t)= \lambda f(t, u(\sigma(t))),$$ $$u^{\Delta^{2i}}(0)= u^{\Delta^{2i}}(\sigma(1))= 0,\qquad 0\le i\le m-1,$$ on a measure chain $\bbfT$. Results on existence and nonexistence of positive solutions are obtained for $\lambda$ evaluated in different intervals. Under certain assumptions, the complete scenario for all $\lambda> 0$ is established. This work develops and improves many known results in the literature even for the case that $\bbfT$ is the real number line. The authors also interpret their general results on measure chains to the discrete case which yields a new set of conditions for the existence and nonexistence of positive solutions to eigenvalue problems for difference equations.

MSC:
34B45Boundary value problems for ODE on graphs and networks
39A99Difference equations
34L05General spectral theory for OD operators
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, R. P.; Bohner, M.: Quadratic functions for second order matrix equations on time scales. Nonlinear anal. TMA 33, 675-692 (1998) · Zbl 0938.49001
[2] Agarwal, R. P.; Bohner, M.: Basic calculus on time scales and its applications. Results math. 35, 3-22 (1999) · Zbl 0927.39003
[3] Agarwal, R. P.; Bohner, M.; Wong, P.: Sturm--Liouville eigenvalue problems on time scales. Appl. math. Comput. 99, 153-166 (1999) · Zbl 0938.34015
[4] Ahlbrandt, C.; Bohner, M.; Ridenhour, J.: Hamiltonian systems on time scales. J. math. Anal. appl. 250, 561-578 (2000) · Zbl 0966.39010
[5] Ahlbrandt, C.; Peterson, A.: Discrete Hamiltonian systems: difference equations, continued fractions, and Riccati equations. (1996) · Zbl 0860.39001
[6] Aulbach, B.; Hilger, S.: Linear dynamic processes with inhomogeneous time scale. Nonlinear dynamics quantum dynamical system math. Res. 59, 9-20 (1990) · Zbl 0719.34088
[7] Avery, R.; Davis, J.; Henderson, J.: Three symmetric positive solutions for lidstone problems by a generalization of the Leggett--Williams theorem. Electron. J. Differential equations 40, 1-15 (2000) · Zbl 0958.34020
[8] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications. (2001) · Zbl 0978.39001
[9] Cheng, J. G.; Zhang, Z. J.: On the existence of positive solutions for a class of singular boundary value problems. Nonlinear anal. TMA 44, 645-655 (2001) · Zbl 0998.34019
[10] Choi, Y. S.: A singular boundary value problem arising from near-ignition analysis of flame structure. Differential integral equations 4, 891-895 (1991) · Zbl 0795.34015
[11] Chyan, C. J.; Henderson, J.: Eigenvalue problems for nonlinear differential equations on a measure chain. J. math. Anal. appl. 245, 547-559 (2000) · Zbl 0953.34068
[12] Chyan, C. J.; Henderson, J.; Lo, H. C.: Positive solutions in an annulus for nonlinear differential equations on a measure chain. Tamkang J. Math. 30, 231-240 (1999) · Zbl 0995.34017
[13] Dalmasso, R.: Positive solutions of singular boundary value problems. Nonlinear anal. TMA 27, 645-652 (1996) · Zbl 0860.34008
[14] Erbe, L. H.; Hilger, S.: Sturmian theory on measure chains. Differential equations dynamical system 1, 223-246 (1993) · Zbl 0868.39007
[15] Erbe, L. H.; Peterson, A.: Green’s function and comparison theorems for differential equations on measure chains. Dynamics of continuous discrete impulsive systems 6, 121-137 (1999) · Zbl 0938.34027
[16] Erbe, L. H.; Peterson, A.: Positive solutions for a nonlinear differential equations on a measure chain. Math. comput. Modelling 32, 571-585 (2000) · Zbl 0963.34020
[17] Ha, K. S.; Lee, Y. H.: Existence of multiple positive solutions of singular boundary value problems. Nonlinear anal. TMA 28, 1429-1438 (1997) · Zbl 0874.34016
[18] Henderson, J.: Positive solutions for nonlinear difference equations. Nonlinear studies 4, 29-36 (1997) · Zbl 0883.39002
[19] Henderson, J.: Multiple solutions for 2mth order Sturm--Liouville boundary value problems on a measure chain. J. difference equations appl. 6, 417-429 (2000) · Zbl 0965.39008
[20] Henderson, J.; Prasad, K. R.: Comparison of eigenvalues for lidstone boundary value problems on a measure chain. Comput. math. Appl. 38, 55-62 (1999) · Zbl 1010.34079
[21] Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Resultate math. 18, 18-56 (1990) · Zbl 0722.39001
[22] B. Kaymakcalan, V. Lakshmikantham, S. Sivasundaram, Dynamic Systems on Measure Chains, Mathematics and its Applications, Vol. 370, Kluwer Academic Publishers, Dordrecht, 1996. · Zbl 0869.34039
[23] Wei, Z. L.: Positive solutions of singular boundary value problems of fourth order differential equations. Acta math. Sinica 42, 715-722 (1999) · Zbl 1022.34018
[24] Wong, F. H.: Existence of positive solutions of singular boundary value problems. Nonlinear anal. TMA 21, 397-406 (1993) · Zbl 0790.34026
[25] Yao, Q. L.; Bai, Z. B.: Existence of positive solutions for boundary value problems of u4)$(t)-{\lambda} h(t)$f$(t,u(t))=0$. Chinese ann. Math. ser. A 20, 575-578 (1999) · Zbl 0948.34502
[26] Zhang, B. G.; Kong, L. J.: Positive solutions of fourth order singular boundary value problems. Nonlinear studies 1, 70-77 (2000) · Zbl 1017.34016
[27] Zhang, B. G.; Kong, L. J.: Existence of positive solutions of fourth order singular boundary value problems. Chinese ann. Math. ser. A 22, 397-402 (2001) · Zbl 0989.34013