×

Dispersionless Toda and Toeplitz operators. (English) Zbl 1024.37047

The goal of this paper is to clarify, in a specific example the link between large systems of ordinary differential equations and certain limiting nonlinear partial differential equations (PDEs). The authors present some results on the dispersionless limit of the Toda lattice equations viewed as the semiclassical limit of an equation involving certain Toeplitz operators. They consider both periodic and nonperiodic boundary conditions. They show that the Toda equations, although they are nonlinear, propagate a Toeplitz operator into an operator arbitrary close to a Toeplitz operator as long as the Toda PDE (dispersionless limit) admits smooth solutions. The authors believe that their methods should be valid in other situations since they only use the Lax pair structure of the lattice and not its complete integrability.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. L. Baily, “Classical theory of \(\theta\)-functions” in Algebraic Groups and Discontinuous Subgroups , Proc. Sympos. Pure Math. 9 , Amer. Math. Soc., Providence, 1966, 306–311. · Zbl 0178.55002
[2] A. M. Bloch, “Steepest descent, linear programming, and Hamiltonian flows” in Mathematical Developments Arising from Linear Programming (Brunswick, Maine, 1988) , Contemp. Math. 114 , Amer. Math. Soc., Providence, 1990, 77–88. · Zbl 0729.34028
[3] A. M. Bloch, R. W. Brockett, and T. S. Ratiu, Completely integrable gradient flows , Comm. Math. Phys. 147 (1992), 57–74. · Zbl 0766.58027
[4] A. M. Bloch, M. O. El Hadrami, H. Flaschka, and T. S. Ratiu, “Maximal tori of some symplectomorphism groups and applications to convexity” in Deformation Theory and Symplectic Geometry (Ascona, Switzerland, 1996) , Math. Phys. Stud. 20 , Kluwer, Dordrecht, 1997, 210–222. · Zbl 1149.58305
[5] A. M. Bloch, H. Flaschka, and T. S. Ratiu, A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra , Duke Math. J. 61 (1990), 41–65. · Zbl 0715.58004
[6] –. –. –. –., A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus , Invent. Math. 113 (1993), 511–529. · Zbl 0806.22012
[7] –. –. –. –., “The Toda PDE and the geometry of the diffeomorphism group of the annulus” in Mechanics Day (Waterloo, Ontario, 1992) , Fields Inst. Comm. 7 , Amer. Math. Soc., Providence, 1996, 57–92.
[8] M. Bordemann, J. Hoppe, P. Schaller, and M. Schlichenmaier, \(\mathrm gl(\infty)\) and geometric quantization , Comm. Math. Phys. 138 (1991), 209–244. · Zbl 0735.58020
[9] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kähler manifolds and \(\gl(N),\;N\to\infty\) , Comm. Math. Phys. 165 (1994), 281–296. · Zbl 0813.58026
[10] D. Borthwick, T. Paul, and A. Uribe, Legendrian distributions with applications to relative Poincaré series , Invent. Math. 122 (1995), 359–402. · Zbl 0859.58015
[11] –. –. –. –., Semiclassical spectral estimates for Toeplitz operators , Ann. Inst. Fourier (Grenoble) 48 (1998), 1189–1229. · Zbl 0920.58059
[12] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators , Ann. of Math. Stud. 99 , Princeton Univ. Press, Princeton, 1981. · Zbl 0469.47021
[13] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , Linear Algebra Appl. 146 (1991), 79–91. · Zbl 0719.90045
[14] R. W. Brockett and A. Bloch, “Sorting with the dispersionless limit of the Toda lattice” in Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (Montréal, 1989) , Univ. Montréal Press, Montréal, 1990, 103–112. · Zbl 0738.35083
[15] P. Deift and K. T.-R. McLaughlin, A continuum limit of the Toda lattice , Mem. Amer. Math. Soc. 131 (1999), no. 624. · Zbl 0946.37035
[16] H. Flaschka, The Toda lattice, I: Existence of integrals , Phys. Rev. B (3) 9 (1974), 1924–1925. · Zbl 0942.37504
[17] J. Goodmann and P. D. Lax, On dispersive difference schemes, I , Comm. Pure Appl. Math. 41 (1988), 591–613. · Zbl 0647.65062
[18] L. Hörmander, The Analysis of Partial Differential Operators, I: Distribution Theory and Fourier Analysis , 2d ed., Grundlehren Math. Wiss. 256 , Springer, Berlin, 1990. · Zbl 0712.35001
[19] M. Kac and P. van Moerbeke, A complete solution to the periodic Toda problem , Proc. Nat. Acad. Sci. USA 72 (1975), 2879–2880. · Zbl 0343.34004
[20] Y. Kodama, Solutions of the dispersionless Toda equation , Phys. Lett. A 147 (1990), 477–482.
[21] B. Kostant, The solution to a generalized Toda lattice and representation theory , Adv. in Math 34 (1979), 195–338. · Zbl 0433.22008
[22] C. D. Levermore and J.-G. Liu, Large oscillations arising in a dispersive numerical scheme , Phys. D 99 (1996), 191–216. · Zbl 0887.65098
[23] S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems , Soviet Physics JETP 40 (1974), 269–274.
[24] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential: An integrable system” in Dynamical Systems, Theory and Applications (Seattle, 1974) , Lecture Notes in Phys. 38 , Springer, Berlin, 1974, 467–497. · Zbl 0323.70012
[25] D. Mumford, Tata Lectures on Theta, I , Progr. Math. 28 , Birkhäuser, Boston, 1983. · Zbl 0509.14049
[26] M. Toda, “Vibration of a chain with nonlinear interaction” in Selected Papers of Morikazu Toda , Ser. Pure Math. 18 , World Sci., River Edge, N.J., 1993, 97–102. \CMP1 375 457
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.