zbMATH — the first resource for mathematics

Regularity properties of free discontinuity sets. (English) Zbl 1024.49013
In this paper the authors have studied the regularity properties of a singular set \(K\) minimizing the Mumford-Shah functional. They deal with the problem of establishing that the set of points where \(K\) is not locally a \(C^1\) surface is “small”. More exactly, they have proved that every ball centered on \(K\) contains, at an estimable scale transition, a subball in which \(K\) is a \(C^1\) surface splitting the ball in two hemispheres on which the oscillation of the function \(u_K\) is small, where \((K,u_K)\) is the pair which minimizes the Mumford-Shah functional.

49J45 Methods involving semicontinuity and convergence; relaxation
49N60 Regularity of solutions in optimal control
49J10 Existence theories for free problems in two or more independent variables
Full Text: DOI Numdam EuDML
[1] Ambrosio, L., Compactness theorem for a special class of functions of bounded variation, Boll. un. mat. ital., 3-B, 857-881, (1989) · Zbl 0767.49001
[2] Ambrosio, L., Existence theory for a new class of variational problems, Arch. rat. mech. anal., 111, 291-322, (1990) · Zbl 0711.49064
[3] Ambrosio, L., A new proof of the SBV compactness theorem, Calc. var., 3, 127-137, (1995) · Zbl 0837.49011
[4] Ambrosio, L.; Fusco, N.; Pallara, D., Partial regularity of free discontinuity sets, II, Ann. scuola norm. sup. Pisa cl. sci. (4), 24, 39-62, (1997) · Zbl 0896.49024
[5] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of bounded variation and free discontinuity problems, (2000), Clarendon Press Oxford · Zbl 0957.49001
[6] Dal Maso, G.; Morel, J.M.; Solimini, S., Une approche variationelle en traitement d’ images: résultats d’ existence et d’ approximation, C. rend. acad. sc. Paris, Série I, 308, 549-554, (1989) · Zbl 0682.49003
[7] Dal Maso, G.; Morel, J.M.; Solimini, S., A variational method in image segmentation: existence and approximation results, Acta mat., 168, 89-151, (1992) · Zbl 0772.49006
[8] David, G., C1 arcs for the minimizers of the mumford – shah functional, SIAM J. appl. math., 56, 783-888, (1996) · Zbl 0870.49020
[9] David, G.; Semmes, S., On the singular set of minimizers of mumford – shah functional, J. math. pures appl., 803, 549-554, (1989)
[10] David, G.; Semmes, S., Fractured fractals and broken dreams, (1997), Clarendon Press Oxford · Zbl 0887.54001
[11] De Giorgi, E.; Ambrosio, L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti accad. naz. lincei rend. cl. sci. fis. mat. nat. s. 8, 82, 199-210, (1988)
[12] De Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. rat. mech. anal., 108, 195-218, (1989) · Zbl 0682.49002
[13] Maddalena F., Solimini S., Concentration and flatness properties of bisected balls, Ann. Scuola Norm. Sup. Pisa (to appear) · Zbl 1170.49307
[14] Maddalena F., Solimini S., Lower semicontinuity properties for functionals with free discontinuities, Arch. Rat. Mech. Anal. (to appear) · Zbl 1013.49010
[15] Maddalena F., Solimini S., Blow-up techniques and regularity near the boundary for free discontinuity problems, in preparation · Zbl 1044.49026
[16] Morel, J.M.; Solimini, S., Variational methods in image segmentation, (1994), Birkhäuser Boston · Zbl 0827.68111
[17] Morrey, C.B., Variational multiple integrals in the calculus of variations, (1966), Springer-Verlag Heidelberg, New York
[18] Mumford, D.; Shah, S., Optimal approximation by piecewise smooth functions and associated variational problems, Comma. pure apple. math., LXII-4, (1989) · Zbl 0691.49036
[19] Rigot, S., Big pieces of C1,α-graphs for minimizers of the the mumford – shah functional, Ann. scoula norm. sup. Pisa cl. sci., 4, 329-349, (2000) · Zbl 0960.49024
[20] Solimini, S., Simplified excision techniques for free discontinuity problems in several variables, J. funct. anal., 151, 1, 1-34, (1997) · Zbl 0891.49007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.