Kaya, Doǧan An explicit and numerical solutions of some fifth-order KdV equation by decomposition method. (English) Zbl 1024.65096 Appl. Math. Comput. 144, No. 2-3, 353-363 (2003). Summary: By considering the Adomian decomposition method, explicit and numerical solutions are calculated for a various fifth-order Korteweg-de Vries (KdV) equations with initial condition. The method does not need linearization or weak nonlinearity assumptions, perturbation theory. The decomposition series explicit solution of the equation is quickly obtained by observing the existence of the self-canceling “noise” terms where sum of components vanishes in the limit. Cited in 49 Documents MSC: 65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:Adomian decomposition method; fifth-order KdV equation; Kawahara equation; self-canceling noise terms; numerical examples; Korteweg-de Vries equations Software:ATFM PDF BibTeX XML Cite \textit{D. Kaya}, Appl. Math. Comput. 144, No. 2--3, 353--363 (2003; Zbl 1024.65096) Full Text: DOI References: [1] Drazin, P. G.; Johnson, R. S., Solutions: An Introduction (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0661.35001 [2] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0802.65122 [3] Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501-544 (1988) · Zbl 0671.34053 [4] Xiqiang, L.; Chenglin, B., Exact solutions of some fifth-order nonlinear equations, Appl. Math. Scr. B (Engl. Ed.), 15, 28-32 (2000) · Zbl 0954.35143 [5] Parkes, E. J.; Duffy, B. R., An automated Tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., 98, 288-300 (1996) · Zbl 0948.76595 [6] Akylas, T. R.; Yang, T.-S., On short-scale oscillatory tails of long-wave disturbances, Stud. Appl. Math., 94, 1-20 (1995) · Zbl 0823.35155 [7] Hunter, J. K.; Scheurle, J., Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, 32, 253-268 (1988) · Zbl 0694.35204 [8] Body, J. P., Weak non-local solitons for capillary-gravity waves: fifth-order Korteweg-de Vries equation, Physica D, 48, 129-146 (1991) · Zbl 0728.35100 [9] Beale, J. T., Exact solitary waves with capillary ripples at infinity, Commun. Pure Appl. Math., 44, 211-247 (1991) · Zbl 0727.76019 [10] Cherruault, Y., Convergence of Adomian’s method, Kybernetics, 18, 31-38 (1989) · Zbl 0697.65051 [11] Rèpaci, A., Nonlinear dynamical systems: On the accuracy of Adomian’s decomposition method, Appl. Math. Lett., 3, 35-39 (1990) · Zbl 0719.93041 [12] Cherruault, Y.; Adomian, G., Decomposition methods: a new proof of convergence, Math. Comput. Model., 18, 103-106 (1993) · Zbl 0805.65057 [13] Wazwaz, A. M., A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, 77-86 (1999) · Zbl 0928.65083 [14] Adomian, G.; Rach, R., Noise terms in decomposition solution series, Comput. Math. Appl., 24, 11, 61-64 (1992) · Zbl 0777.35018 [15] Wazwaz, A. M., Necessary conditions for the appearance of noise terms in decomposition solution series, J. Math. Anal. Appl., 5, 265-274 (1997) · Zbl 0882.65132 [16] Wolfram, S., Mathematica for Windows (1993), Wolfram Research Inc This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.