Esnault, Hélène; Kahn, Bruno; Levine, Marc; Viehweg, Eckart The Arason invariant and mod 2 algebraic cycles. (English) Zbl 1025.11009 J. Am. Math. Soc. 11, No. 1, 73-118 (1998). From the text: Let \(k\) be a field, \(X\) over \(k\) a smooth variety with function field \(K\) and \(E\) a quadratic vector bundle over \(X\). Assuming that the generic fibre \(q\) of \(E\) is in \(I^3K\subset W(K)\), we compute the image of its Arason invariant \[ e^3(q)\in H^0(X,{\mathcal H}_{\text{ét}}^3({\mathbb Z}/2)) \] in \(\text{CH}^2(X)/2\) by the \(d_2\) differential of the Bloch-Ogus spectral sequence. This gives an obstruction to \(e^3(q)\) being a global cohomology class. This paper is organized as follows. In Section 1 we review Arason’s invariant, and in Section 2 the special Clifford group. The heart of the paper is Sections 3 and 4, where we compute low-degree \({\mathcal K}\)-cohomology of split reductive linear algebraic groups with simply connected derived subgroups and their classifying schemes. We collect the fruits of our labor in Section 6, where we define the invariants \(\gamma_1(F)\) and \(\gamma_2 (F)\) and prove in Theorem 6.9 that \[ 2\gamma_2(F)= c_2(F)+ \gamma_1(F)^2\in \text{CH}^2(X) \] where \(c_2(F)\) is the second Chern class of the \(\text{SL}(2n)\)-tensor (a vector bundle) stemming from \(F\). Theorem 1 follows from this identity and the identification of the map \(d_2\) as a differential in a snake diagram. Theorem 1 is proven in Section 8. In Section 9 we give some applications to quadratic forms over a field. There are 3 appendices. Appendix A shows how different models of the simplicial classifying scheme of a split torus yield the same \({\mathcal K}\)-cohomology. Appendix B presents a construction and a characterization of the invariant defined by Serre and Rost for torsors under a simple, simply connected algebraic group \(H\) over a field: in the case of Spin, this allows this paper to be self-contained. Let us point out that our method tackles the \(p\)-primary part of the Rost invariant as well, in case \(\operatorname{char} k=p> 0\). Finally, Appendix C compares \({\mathcal K}\)-cohomology of the simplicial scheme \(BH\) with that of an approximating variety \(B_r H\): it turns out that they do not coincide. In this last appendix, we have to stay away from the characteristic of \(k\) if it is nonzero. The group \(H^1(G,{\mathcal K}_2)\) was first computed by P. Deligne at the end of the seventies for any \(G\), semisimple, simply connected, and not necessarily split. Our method here is different from this. Cited in 2 ReviewsCited in 21 Documents MSC: 11E81 Algebraic theory of quadratic forms; Witt groups and rings 14C25 Algebraic cycles 14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry 11E72 Galois cohomology of linear algebraic groups × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Jón Kr. Arason, Cohomologische invarianten quadratischer Formen, J. Algebra 36 (1975), no. 3, 448 – 491 (French). · Zbl 0314.12104 · doi:10.1016/0021-8693(75)90145-3 [2] J. Barge, Une definition cohomologique de l’invariant d’Arason, preprint, 1995. [3] Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181 – 201 (1975). · Zbl 0307.14008 [4] Spencer Bloch and Kazuya Kato, \?-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107 – 152. · Zbl 0613.14017 [5] R. Bott On torsion in Lie groups, Proc. Acad. Sci. USA 40 (1954), 586-588. · Zbl 0057.02201 [6] Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. · Zbl 1107.13001 [7] C. Chevalley, Sur les décompositions cellulaires des espaces \?/\?, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 1 – 23 (French). With a foreword by Armand Borel. · Zbl 0824.14042 [8] J.-L. Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, \?-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) Proc. Sympos. Pure Math., vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 1 – 64. · Zbl 0834.14009 [9] Jean-Louis Colliot-Thélène and Wayne Raskind, \?\(_{2}\)-cohomology and the second Chow group, Math. Ann. 270 (1985), no. 2, 165 – 199. · Zbl 0536.14004 · doi:10.1007/BF01456181 [10] J.-L. Colliot-Thélène, R. Hoobler, and B. Kahn, The Bloch-Ogus-Gabber theorem, to appear in: Proc. Fields Institute (Volume in memory of R. Thomason). · Zbl 0911.14004 [11] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5 – 57 (French). Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5 – 77 (French). [12] P. Deligne, unpublished notes of IHES lectures, 1979. [13] Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970 (French). Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). [14] Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287 – 301 (French). · Zbl 0269.22010 · doi:10.1007/BF01418790 [15] Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53 – 88 (French). Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. · Zbl 0312.14009 [16] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349-462. Engl. translation: AMS Transl. Ser. II 6 (1957), 111-244. · Zbl 0048.01701 [17] Hélène Esnault, Bruno Kahn, and Eckart Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145 – 188. · Zbl 0772.57028 [18] H. Freudenthal, Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen. II, Indag. Math. 16 (1954), 487-491. · Zbl 0059.02303 [19] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. · Zbl 0541.14005 [20] Ofer Gabber, Gersten’s conjecture for some complexes of vanishing cycles, Manuscripta Math. 85 (1994), no. 3-4, 323 – 343. · Zbl 0827.19002 · doi:10.1007/BF02568202 [21] Henri Gillet, Riemann-Roch theorems for higher algebraic \?-theory, Adv. in Math. 40 (1981), no. 3, 203 – 289. · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0 [22] Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. France (N.S.) 21 (1985), 87 (French, with English summary). · Zbl 0615.14011 [23] A. Grothendieck, Torsion homologique et sections rationnelles, exposé 5 in Séminaire Chevalley, “Anneaux de Chow et applications”, Paris, 1958. [24] Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966 – 1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. [25] Bruno Harris, Torsion in Lie groups and related spaces, Topology 5 (1966), 347 – 354. · Zbl 0161.20301 · doi:10.1016/0040-9383(66)90026-7 [26] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. · Zbl 0325.20039 [27] Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). Luc Illusie, Complexe cotangent et déformations. II, Lecture Notes in Mathematics, Vol. 283, Springer-Verlag, Berlin-New York, 1972 (French). [28] Bill Jacob and Markus Rost, Degree four cohomological invariants for quadratic forms, Invent. Math. 96 (1989), no. 3, 551 – 570. · Zbl 0685.10015 · doi:10.1007/BF01393696 [29] Uwe Jannsen, Mixed motives and algebraic \?-theory, Lecture Notes in Mathematics, vol. 1400, Springer-Verlag, Berlin, 1990. With appendices by S. Bloch and C. Schoen. · Zbl 0691.14001 [30] J. F. Jardine, Higher spinor classes, Mem. Amer. Math. Soc. 110 (1994), no. 528, vi+88. · Zbl 0813.11023 · doi:10.1090/memo/0528 [31] J. P. Jouanolou, Riemann-Roch sans dénominateurs, Invent. Math. 11 (1970), 15 – 26. · Zbl 0199.55901 · doi:10.1007/BF01389802 [32] Bruno Kahn, Descente galoisienne et \?\(_{2}\) des corps de nombres, \?-Theory 7 (1993), no. 1, 55 – 100 (French, with English and French summaries). · Zbl 0780.12007 · doi:10.1007/BF00962794 [33] B. Kahn, Applications of weight-two motivic cohomology, Documenta Math. 1 (1996), 395-416. CMP 97:05 [34] Ahmed Laghribi, Isotropie de certaines formes quadratiques de dimensions 7 et 8 sur le corps des fonctions d’une quadrique, Duke Math. J. 85 (1996), no. 2, 397 – 410 (French). · Zbl 0865.11030 · doi:10.1215/S0012-7094-96-08516-6 [35] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1980. Revised second printing; Mathematics Lecture Note Series. · Zbl 0437.10006 [36] Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections, Ann. Sci. Ec. Norm. Sup. (4) 30 (1997), no. 4, 499-525. CMP 97:14 · Zbl 0918.14004 [37] Marc Levine, The indecomposable \?\(_{3}\) of fields, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 255 – 344. · Zbl 0705.19001 [38] Marc Levine, The algebraic \?-theory of the classical groups and some twisted forms, Duke Math. J. 70 (1993), no. 2, 405 – 443. · Zbl 0798.11009 · doi:10.1215/S0012-7094-93-07008-1 [39] S. Lichtenbaum, Values of zeta-functions at non-negative integers, Lect. Notes in Math. 1068, Springer, Berlin, 1984, 127-138. CMP 16:17 · Zbl 0591.14014 [40] Stephen Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math. 88 (1987), no. 1, 183 – 215. · Zbl 0615.14004 · doi:10.1007/BF01405097 [41] S. Lichtenbaum, New results on weight-two motivic cohomology, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 35 – 55. · Zbl 0809.14004 · doi:10.1007/978-0-8176-4576-2_2 [43] A. S. Merkur\(^{\prime}\)ev, On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), no. 3, 542 – 547 (Russian). [44] A. S. Merkur\(^{\prime}\)ev, The group \?\textonesuperior (\?,\?\(_{2}\)) for projective homogeneous varieties, Algebra i Analiz 7 (1995), no. 3, 136 – 164 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 7 (1996), no. 3, 421 – 444. [45] A. S. Merkurjev, Comparison of equivariant and ordinary \(K\)-theory of algebraic varieties, to appear in St.-Petersburg Math. J. [46] A. S. Merkur\(^{\prime}\)ev and A. A. Suslin, \?-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011 – 1046, 1135 – 1136 (Russian). [47] A. S. Merkur\(^{\prime}\)ev and A. A. Suslin, Norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339 – 356 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 2, 349 – 367. · Zbl 0711.19003 [48] A. S. Merkur\(^{\prime}\)ev and A. A. Suslin, The group \?\(_{3}\) for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522 – 545 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 541 – 565. · Zbl 0711.19002 [49] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. · Zbl 0298.57008 [50] I. A. Panin, Application of \(K\)-theory in algebraic geometry, doctoral dissertation, LOMI, Leningrad, 1984. [51] I. A. Panin, A splitting principle, Preprint, Bielefeld University, 1994. [52] R. Parimala and V. Srinivas, Analogues of the Brauer group for algebras with involution, Duke Math. J. 66 (1992), no. 2, 207 – 237. · Zbl 0780.13002 · doi:10.1215/S0012-7094-92-06606-3 [53] Emmanuel Peyre, Corps de fonctions de variétés homogènes et cohomologie galoisienne, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 7, 891 – 896 (French, with English and French summaries). · Zbl 0871.14038 [54] Daniel Quillen, Higher algebraic \?-theory. I, Algebraic \?-theory, I: Higher \?-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85 – 147. Lecture Notes in Math., Vol. 341. · Zbl 0292.18004 [55] Peter Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann. 150 (1963), 411 – 439. · Zbl 0114.02206 · doi:10.1007/BF01357435 [56] M. Rost, Hilbert’s theorem 90 for \(K_3^M\) for degree-two extensions, preprint, Regensburg, 1986. [57] M. Rost, Chow groups with coefficients, Documenta Math. 1 (1996), 319-393. CMP 97:04 [58] M. Rost, Cohomological invariants, in preparation. [59] Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. · Zbl 0584.10010 [60] Jean-Pierre Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque 227 (1995), Exp. No. 783, 4, 229 – 257 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. [61] C. S. Seshadri, Line bundles on Schubert varieties, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 499 – 528. · Zbl 0688.14047 [62] A. A. Suslin, \?-theory and \?-cohomology of certain group varieties, Algebraic \?-theory, Adv. Soviet Math., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 53 – 74. · Zbl 0746.19004 [63] A. A. Suslin, Torsion in \?\(_{2}\) of fields, \?-Theory 1 (1987), no. 1, 5 – 29. · Zbl 0635.12015 · doi:10.1007/BF00533985 [64] M. Shyevski, The fifth invariant of quadratic forms, Algebra i Analiz 2 (1990), no. 1, 213 – 234 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 1, 179 – 198. · Zbl 0697.10021 [65] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, 1966, pp. 33 – 62. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.