Lin, Shou Mapping theorems on \(k\)-semistratifiable spaces. (English) Zbl 1025.54501 Tsukuba J. Math. 21, No. 3, 809-815 (1997). Summary: The mapping properties of \(k\)-semistratifiable spaces are discussed. The main results are(1) A closed-map from a \(k\)-semistratifiable space is a compact-covering map.(2) An open and compact image of a \(k\)-semistratifiable space is a \(\sigma\)-space.(3) A perfect inverse image of a \(k\)-semistratifiable space is a \(k\)-semistratifiable space if and only if it has a KG-sequence. MSC: 54C10 Special maps on topological spaces (open, closed, perfect, etc.) 54E20 Stratifiable spaces, cosmic spaces, etc. 54E18 \(p\)-spaces, \(M\)-spaces, \(\sigma\)-spaces, etc. Keywords:compact map; perfect map; \(G_\delta\)-diagonal; closed-map; \(k\)-semistratifiable space; \(\sigma\)-space PDF BibTeX XML Cite \textit{S. Lin}, Tsukuba J. Math. 21, No. 3, 809--815 (1997; Zbl 1025.54501) Full Text: DOI OpenURL