×

Higher dimensional PH curves. (English) Zbl 1025.65016

A geometric method is introduced to construct Pythagorean hodograph (PH) curves in high dimensional Euclidian spaces. The polynomial curves are constructed from rational curves in the n-dimensional real space using two maps, the normalizer and the stereographic projection.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dietz, R., Hoschek, J., and Jüttler, B.: An algebraic approach to curves and surfaces on the sphere and on other quadrics. Comput. Aided Geom. Design, 10 (3-4), 211-229 (1993). · Zbl 0781.65009 · doi:10.1016/0167-8396(93)90037-4
[2] Hoschek, J.: Offset curves in the plane. Computer-Aided Design, 26 (3), 189-203 (1994).
[3] Lee, L.-K., Kim, M.-S., and Elber, G.: Planar curve offset based on circle approximation. Computer-Aided Design, 28 (8), 617-630 (1996). · Zbl 0852.68104 · doi:10.1016/0010-4485(95)00078-X
[4] Lee, I.-K., and Kim, M.-S.: Polynomial/rational approximation of minkowski sum boundary curves. Graphical Models and Image Processing, 60 (2), 136-165 (1998).
[5] Farouki, R. T., and Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop., 34 736-752 (1990). · doi:10.1147/rd.345.0736
[6] Farouki, R. T., and Neff, C. A.: Analytic properties of plane offset curves. Comput. Aided Geom. Design, 7 (1-4), 83-99 (1990). · Zbl 0718.53003 · doi:10.1016/0167-8396(90)90023-K
[7] Farouki, R. T., and Neff, C. A.: Algebraic properties of plane offset curves. Comput. Aided Geom. Design, 7 (1-4), 101-127 (1990). · Zbl 0724.65008 · doi:10.1016/0167-8396(90)90024-L
[8] Farouki, R. T., and Sakkalis, T.: Pythagorean-hodograph space curves. Adv. Comput. Math., 2 (1), 41-66 (1994). · Zbl 0829.65011 · doi:10.1007/BF02519035
[9] Pham, B.: Offset curves and surfaces: a brief survey. Computer-Aided Design, 24 (4) 223-229 (1992).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.