zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures. (English) Zbl 1025.92011
Summary: We study the use of a pulse vaccination strategy to eradicate infectious diseases modelizable by SIR epidemic models. We demonstrate the global asymptotic stability of the eradication solution [which was conjectured by {\it L. Stone} et al., Math. Comput. Modelling 31, 207-215 (2000; Zbl 1043.92527), for pulse vaccination in the classical SIR model] for a general model in which non-permanent immunization, variations of the total population size, and the emerging problem of vaccine failures are considered. As a strategy using a second inoculation as a standard practice, we propose a model to describe a modification of this strategy including the second inoculation and we study its local asymptotic stability.

34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
34D23Global stability of ODE
Full Text: DOI
[1] Shulgin, B.; Stone, L.; Agur, Z.: Theoretical examination of pulse vaccination policy in the SIR epidemic model. Mathl. comput. Modelling 31, No. 4/5, 207-215 (2000) · Zbl 1043.92527
[2] Agur, Z.; Cojocaru, L.; Mazor, G.; Anderson, R. M.; Danon, Y. L.: 90 pulse mass measles vaccination across age cohorts. Proc. nat. Acad. sci. USA, 11698-11702 (1993)
[3] Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. biosc. 28, 335-356 (1976) · Zbl 0326.92017
[4] Shulgin, B.; Stone, L.; Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bull. of math. Biol. 60, 1123-1148 (1998) · Zbl 0941.92026
[5] Dequadros, C. A.; Andrus, J. K.; Oliv, J. M.: Eradication of poliomyelitis: progress. The am. Fed. inf. Dis. J. 10, No. 3, 222-229 (1991)
[6] Sabin, A. B.: Measles: killer of millions in developing countries: strategies of elimination and continuing control. Eur. J. Of epid. 7, 1-22 (1991)
[7] Ramsay, M.; Gay, N.; Miller, E.: The epidemiology of measles in england and wales: rationale for 1994 national vaccination campaign. Eut. J. Of epid. 7, 1-22 (1991)
[8] Hyman, J. M.; Li, J.: An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Math. biosc. 167, 65-86 (2000) · Zbl 0962.92033
[9] Smith, H. L.: Multiple stable subharmonic for a periodic epidemic model. J. of math. Biol. 17, 179-190 (1983) · Zbl 0529.92018
[10] Kuznetsov, Yu.A.; Piccardi, C.: Bifurcation analisys of periodic SIR and SEIR epidemic models. J. math. Biol. 32, 109-121 (1994) · Zbl 0786.92022
[11] Busenberg, S.; Van Der Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. of math. Biol. 28, 257-570 (1990) · Zbl 0725.92021
[12] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global dynamics of a SEIR model with varying population size. Math. biosc. 160, 191-213 (1999) · Zbl 0974.92029
[13] Esteva, L.; Vargas, C.: A model for dengue disease with variable human population. J. of math. Biol. 38, 220-240 (1999) · Zbl 0981.92016
[14] Zhou, J.; Hethcote, H. W.: Population size dependent incidence in models for diseases without immunity. J. of math. Biol. 32, 809-834 (1994) · Zbl 0823.92027
[15] Kribs-Zaleta, C.; Hernandez, J. X. Velasco: A simple vaccination model with multiple endemic states. Math. biosc. 164, 183-201 (2000) · Zbl 0954.92023
[16] Greenhalgh, D.; Diekmann, O.; De Jong, M. C. M.: Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math. biosc. 165, 1-25 (2000) · Zbl 0983.92007
[17] Capasso, V.: Mathematical structure of epidemic models. (1993) · Zbl 0798.92024
[18] Poland, G. A.; Jacobson, R. M.: Failures to reach the goal of measles elimination. Arch, of int. Med. 154, 1815-1822 (1994)
[19] Control, Center For Disease; Prevention: Measles prevention, recomendations of the immunization practices advisory commitee (ACIP). Mmwr 38, No. S-9, 1-18 (1990)
[20] Pediatrics, American Academy Of; Diseases, Committee On Infectious: Measles: reassesment of current immunization policy. Pediatrics 84, 1110-1113 (1989)
[21] Coppel, W. A.: Stability and asymptotic behavior of differential equations. (1965) · Zbl 0154.09301
[22] D’onofrio, A.: Stability properties of pulse vaccination strategy. Math. biose. 179, 57-72 (2002)
[23] D’onofrio, A.: Can vaccine failures induce chaos? A numerical study. (2002)