×

zbMATH — the first resource for mathematics

The octonions. (English) Zbl 1026.17001
John Baez exhibits ‘the octonions’! Like in a gallery the reader is encouraged to walk, under competent guidance, from picture to picture, from sculpture to sculpture. Starting with a vivid humorous historic excursion, to Hamilton’s approach to complex numbers and his invention of quaternions, the quite unspectacular birth of octonion theory initiated by Graves and Cayley makes up the first exposition hall.
It is Baez’ ability to be narrative, nearly precise in mathematical terms, but sheltering the reader from technicalities, which makes the reading fun, not only for the mathematically trained but also for a reader with a moderate background.
Having constructed the octonions, much emphasis is laid on a mesh of relations from group theory, homology theory, algebra and representation theory to geometry and especially projective planes. It is this networking which provokes many aha’s and oho’s and unveils a beauty seeable for any open-minded reader. Even physics is touched in subjects like Bott periodicity, triality, Lorentzian geometry, special relativity, string theory and supersymmetry, showing by a heap of examples that ‘the octonions’ is not an idle subject.
This paper encourages anyone to explore further the rich literature given, and even the octonion specialist will find hints in the text where to go for further amusement.

MSC:
17-02 Research exposition (monographs, survey articles) pertaining to nonassociative rings and algebras
17A35 Nonassociative division algebras
17C40 Exceptional Jordan structures
17C90 Applications of Jordan algebras to physics, etc.
22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20 – 104. · Zbl 0096.17404 · doi:10.2307/1970147 · doi.org
[2] J. F. Adams, Lectures on exceptional Lie groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. With a foreword by J. Peter May; Edited by Zafer Mahmud and Mamoru Mimura. · Zbl 0866.22008
[3] M. F. Atiyah and F. Hirzebruch, Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223 – 226. · Zbl 0108.35902
[4] Helena Albuquerque and Shahn Majid, Quasialgebra structure of the octonions, J. Algebra 220 (1999), no. 1, 188 – 224. · Zbl 0999.17006 · doi:10.1006/jabr.1998.7850 · doi.org
[5] Chris H. Barton and Anthony Sudbery, Magic squares of Lie algebras, preprint available as math.RA/0001083.
[6] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. · Zbl 0613.53001
[7] F. van der Blij, History of the octaves, Simon Stevin 34 (1960/1961), 106 – 125. · Zbl 0145.26205
[8] F. van der Blij and T. A. Springer, Octaves and triality, Nieuw Arch. Wisk. (3) 8 (1960), 158 – 169. · Zbl 0127.11804
[9] Dominik Boos, Ein tensorkategorieller Zugang zum Satz von Hurwitz, Diplomarbeit, ETH Zurich, March 1998.
[10] Armand Borel, Le plan projectif des octaves et les sphéres commes espaces homogènes, Compt. Rend. Acad. Sci. 230 (1950), 1378-1380. · Zbl 0041.52203
[11] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87 – 89. · Zbl 0082.16602
[12] Robert B. Brown, Groups of type \?\(_{7}\), J. Reine Angew. Math. 236 (1969), 79 – 102. · Zbl 0182.04703 · doi:10.1515/crll.1969.236.79 · doi.org
[13] Élie Cartan, Sur la structure des groupes de tranformations finis et continus, Thèse, Paris, Nony, 1894. · Zbl 0007.10204
[14] Élie Cartan, Les groupes réels simples finis et continus, Ann. Sci. École Norm. Sup. 31 (1914), 255-262.
[15] Élie Cartan, Nombres complexes, in Encyclopédie des sciences mathématiques, 1, ed. J. Molk, 1908, 329-468.
[16] Élie Cartan, Le principe de dualité et la théorie des groupes simple et semi-simples, Bull. Sci. Math. 49 (1925), 361-374. · JFM 51.0322.02
[17] Arthur Cayley, On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions, Philos. Mag. 26 (1845), 208-211.
[18] Arthur Cayley, On Jacobi’s elliptic functions, in reply to the Rev. B. Bronwin; and on quaternions (appendix only), in The Collected Mathematical Papers, Johnson Reprint Co., New York, 1963, p. 127.
[19] Sultan Catto, Carlos J. Moreno and Chia-Hsiung Tze, Octonionic Structures in Physics, to appear.
[20] Claude Chevalley and Richard D. Schafer, The exceptional simple Lie algebras \(\textup{F}_4\) and \(\textup{E}_6\), Proc. Nat. Acad. Sci. USA 36 (1950), 137-141. · Zbl 0037.02003
[21] Yvonne Choquet-Bruhat and Cécile DeWitt-Morette, Analysis, manifolds and physics. Part II, North-Holland Publishing Co., Amsterdam, 1989. 92 applications. · Zbl 0682.58002
[22] William K. Clifford, Applications of Grassmann’s extensive algebra, Amer. Jour. Math. 1 (1878), 350-358. · JFM 10.0297.02
[23] F. R. Cohen, On the Whitehead square, Cayley-Dickson algebras, and rational functions, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 55 – 62. Papers in honor of José Adem (Spanish). · Zbl 0843.55013
[24] E. Corrigan and T. J. Hollowood, The exceptional Jordan algebra and the superstring, Comm. Math. Phys. 122 (1989), no. 3, 393 – 410. · Zbl 0678.17019
[25] Harold Scott MacDonald Coxeter, Integral Cayley numbers, Duke Math. Jour. 13 (1946), 561-578.
[26] Michael J. Crowe, A history of vector analysis. The evolution of the idea of a vectorial system, University of Notre Dame Press, Notre Dame, Ind.-London, 1967. · Zbl 0165.00303
[27] C. W. Curtis, The four and eight square problem and division algebras, in Studies in Modern Algebra, ed. A. Albert, Prentice-Hall, Englewood Cliffs, New Jersey, 1963, pp. 100-125.
[28] Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison, and Edward Witten , Quantum fields and strings: a course for mathematicians. Vol. 1, 2, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996 – 1997. · Zbl 0984.00503
[29] Leonard E. Dickson, On quaternions and their generalization and the history of the eight square theorem, Ann. Math. 20 (1919), 155-171. · JFM 47.0099.01
[30] Geoffrey M. Dixon, Division algebras: octonions, quaternions, complex numbers and the algebraic design of physics, Mathematics and its Applications, vol. 290, Kluwer Academic Publishers Group, Dordrecht, 1994. · Zbl 0807.15024
[31] M. J. Duff , The world in eleven dimensions: supergravity, supermembranes and M-theory, Studies in High Energy Physics Cosmology and Gravitation, IOP Publishing, Bristol, 1999. · Zbl 0999.00513
[32] Noam D. Elkies and Benedict H. Gross, The exceptional cone and the Leech lattice, Internat. Math. Res. Notices 14 (1996), 665 – 698. · Zbl 0863.11027 · doi:10.1155/S1073792896000426 · doi.org
[33] Gerard G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York, 1972. · Zbl 0235.46085
[34] J. M. Evans, Supersymmetric Yang-Mills theories and division algebras, Nuclear Phys. B 298 (1988), no. 1, 92 – 108. · doi:10.1016/0550-3213(88)90305-7 · doi.org
[35] John R. Faulkner, A construction of Lie algebras from a class of ternary algebras, Trans. Amer. Math. Soc. 155 (1971), 397 – 408. · Zbl 0215.38503
[36] J. R. Faulkner and J. C. Ferrar, Exceptional Lie algebras and related algebraic and geometric structures, Bull. London Math. Soc. 9 (1977), no. 1, 1 – 35. · Zbl 0349.17004 · doi:10.1112/blms/9.1.1 · doi.org
[37] Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and \?\?\textonesuperior \?\(_{8}\), Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991. · Zbl 0743.17029
[38] F. D. Veldkamp, In honor of Hans Freudenthal on his eightieth birthday, Geom. Dedicata 19 (1985), no. 1, 2 – 5. , https://doi.org/10.1007/BF00233100 Hans Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Geom. Dedicata 19 (1985), no. 1, 7 – 63 (German). · Zbl 0573.51004 · doi:10.1007/BF00233101 · doi.org
[39] Hans Freudenthal, Zur ebenen Oktavengeometrie, Indag. Math. 15 (1953), 195-200.
[40] Hans Freudenthal, Beziehungen der \?\(_{7}\) und \?\(_{8}\) zur Oktavenebene. X, XI, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 457 – 471; 472 – 487 (German). · Zbl 0123.13501
[41] Hans Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (1964), 145-190. · Zbl 0125.10003
[42] Hans Freudenthal, Bericht über die Theorie der Rosenfeldschen elliptischen Ebenen, in Raumtheorie, Wege Der Forschung, CCLXX, Wissenschaftliche Buchgesellschaft, Darmstadt, 1978, pp. 283-286.
[43] Lynn E. Garner, An outline of projective geometry, North-Holland Publishing Co., New York-Amsterdam, 1981. · Zbl 0462.51001
[44] Robert Perceval Graves, Life of Sir William Rowan Hamilton, 3 volumes, Arno Press, New York, 1975.
[45] Michael B. Green, John H. Schwarz, and Edward Witten, Superstring theory. Vol. 1, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1988. Introduction. Michael B. Green, John H. Schwarz, and Edward Witten, Superstring theory. Vol. 2, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1988. Loop amplitudes, anomalies and phenomenology. · Zbl 0619.53002
[46] Bernard Grossman, Thomas W. Kephart, and James D. Stasheff, Solutions to Yang-Mills field equations in eight dimensions and the last Hopf map, Comm. Math. Phys. 96 (1984), no. 4, 431 – 437. · Zbl 0575.58034
[47] Murat Günaydin, Generalized conformal and superconformal group actions and Jordan algebras, Modern Phys. Lett. A 8 (1993), no. 15, 1407 – 1416. · Zbl 1015.17501 · doi:10.1142/S0217732393001124 · doi.org
[48] Murat Günaydin, Kilian Koepsell, and Hermann Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Comm. Math. Phys. 221 (2001), 57-76 CMP 2001:16
[49] M. Günaydin, C. Piron, and H. Ruegg, Moufang plane and octonionic quantum mechanics, Comm. Math. Phys. 61 (1978), no. 1, 69 – 85. · Zbl 0409.22018
[50] Feza Gürsey and Chia-Hsiung Tze, On the role of division, Jordan and related algebras in particle physics, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. · Zbl 0457.30039
[51] William Rowan Hamilton, Four and eight square theorems, in Appendix 3 of The Mathematical Papers of William Rowan Hamilton, vol. 3, eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 648-656.
[52] Thomas L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, Md., 1980. · Zbl 0553.01015
[53] F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Inc., Boston, MA, 1990. · Zbl 0694.53002
[54] Adolf Hurwitz, Über die Composition der quadratischen Formen von beliebig vielen Variabeln, Nachr. Ges. Wiss. Göttingen (1898), 309-316.
[55] Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. · Zbl 0202.22903
[56] Pascual Jordan, Über eine Klasse nichtassociativer hyperkomplexer Algebren, Nachr. Ges. Wiss. Göttingen (1932), 569-575. · JFM 58.0135.02
[57] Pascual Jordan, Über eine nicht-desarguessche ebene projektive Geometrie, Abh. Math. Sem. Hamburg 16 (1949), 74-76. · Zbl 0034.38103
[58] Pascual Jordan, John von Neumann, Eugene Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35 (1934), 29-64. · Zbl 0008.42103
[59] Dominic D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. · Zbl 1027.53052
[60] I. L. Kantor and A. S. Solodovnikov, Hypercomplex numbers, Springer-Verlag, New York, 1989. An elementary introduction to algebras; Translated from the Russian by A. Shenitzer. · Zbl 0669.17001
[61] Michel Kervaire, Non-parallelizability of the \(n\) sphere for 7\(">, Proc. Nat. Acad. Sci. USA 44 (1958), 280-283.\) · Zbl 0093.37303
[62] Wilhelm Killing, Die Zusammensetzung der stetigen endlichen Transformationsgruppen I, Math. Ann. 31 (1888), 252-290. II, 33 (1889) 1-48. III, 34 (1889), 57-122. IV, 36 (1890), 161-189.
[63] Taichiro Kugo and Paul Townsend, Supersymmetry and the division algebras, Nuclear Phys. B 221 (1983), no. 2, 357 – 380. · doi:10.1016/0550-3213(83)90584-9 · doi.org
[64] Greg Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109 – 151. · Zbl 0870.17005
[65] J. M. Landsberg and L. Manivel, The projective geometry of Freudenthal’s magic square, J. Algebra 239 (2001), 477-512. · Zbl 1064.14053
[66] Jaak Lõhmus, Eugene Paal, and Leo Sorgsepp, Nonassociative algebras in physics, Hadronic Press Monographs in Mathematics, Hadronic Press, Inc., Palm Harbor, FL, 1994. · Zbl 0840.17001
[67] Corinne A. Manogue and Tevian Dray, Octonionic Möbius transformations, Modern Phys. Lett. A 14 (1999), no. 19, 1243 – 1255. · Zbl 0927.15007 · doi:10.1142/S0217732399001346 · doi.org
[68] Corinne A. Manogue and Jörg Schray, Finite Lorentz transformations, automorphisms, and division algebras, J. Math. Phys. 34 (1993), no. 8, 3746 – 3767. · Zbl 0797.53075 · doi:10.1063/1.530056 · doi.org
[69] Jörg Schray and Corinne A. Manogue, Octonionic representations of Clifford algebras and triality, Found. Phys. 26 (1996), no. 1, 17 – 70. · doi:10.1007/BF02058887 · doi.org
[70] Kevin McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), no. 4, 612 – 627. · Zbl 0421.17010
[71] Kurt Meyberg, Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 162 – 174, 175 – 190 (German). · Zbl 0261.17002
[72] R. Guillermo Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, preprint available at q-alg/9710013.
[73] Ruth Moufang, Alternativkörper und der Satz vom vollständigen Vierseit, Abh. Math. Sem. Hamburg 9 (1933), 207-222. · Zbl 0007.07205
[74] Susumu Okubo, Introduction to octonion and other non-associative algebras in physics, Montroll Memorial Lecture Series in Mathematical Physics, vol. 2, Cambridge University Press, Cambridge, 1995. · Zbl 0841.17001
[75] È. B. Vinberg , Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg.
[76] Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987. Two-spinor calculus and relativistic fields. Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 2, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1988. Spinor and twistor methods in space-time geometry. · Zbl 0663.53013
[77] Ian R. Porteous, Topological geometry, 2nd ed., Cambridge University Press, Cambridge-New York, 1981. · Zbl 0446.15001
[78] Boris A. Rosenfeld, Geometrical interpretation of the compact simple Lie groups of the class \(\textup{E}\) (Russian), Dokl. Akad. Nauk. SSSR 106 (1956), 600-603.
[79] Boris Rosenfeld, Geometry of Lie groups, Mathematics and its Applications, vol. 393, Kluwer Academic Publishers Group, Dordrecht, 1997. · Zbl 0867.53002
[80] Markus Rost, On the dimension of a composition algebra, Doc. Math. 1 (1996), No. 10, 209 – 214. · Zbl 0867.17004
[81] Helmut Salzmann, Dieter Betten, Theo Grundhöfer, Hermann Hähl, Rainer Löwen, and Markus Stroppel, Compact projective planes, De Gruyter Expositions in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995. With an introduction to octonion geometry. · Zbl 0851.51003
[82] Richard D. Schafer, On algebras formed by the Cayley-Dickson process, Amer. Jour. of Math. 76 (1954), 435-446. · Zbl 0059.02901
[83] Richard D. Schafer, An introduction to nonassociative algebras, Dover Publications, Inc., New York, 1995. Corrected reprint of the 1966 original. · Zbl 1375.17001
[84] Jörg Schray, Octonions and Supersymmetry, Ph.D. thesis, Department of Physics, Oregon State University, 1994.
[85] G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical Quantum Gravity 4 (1987), no. 2, 227 – 236. · Zbl 0614.17014
[86] T. A. Springer, The projective octave plane. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 74 – 101. · Zbl 0131.36901
[87] T. A. Springer, Characterization of a class of cubic forms, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 259 – 265. · Zbl 0108.03302
[88] T. A. Springer, On the geometric algebra of the octave planes, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 451 – 468. · Zbl 0113.35903
[89] Tonny A. Springer and Ferdinand D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. · Zbl 1087.17001
[90] Fredrick W. Stevenson, Projective planes, W. H. Freeman and Co., San Francisco, Calif., 1972. · Zbl 0245.50022
[91] A. Sudbery, Octonionic description of exceptional Lie superalgebras, J. Math. Phys. 24 (1983), no. 8, 1986 – 1988. · Zbl 0525.17002 · doi:10.1063/1.525956 · doi.org
[92] A. Sudbery, Division algebras, (pseudo)orthogonal groups and spinors, J. Phys. A 17 (1984), no. 5, 939 – 955. · Zbl 0544.22010
[93] Jacques Tits, Le plan projectif des octaves et les groupes de Lie exceptionnels, Bull. Acad. Roy. Belg. Sci. 39 (1953), 309-329. · Zbl 0050.25803
[94] Jacques Tits, Le plan projectif des octaves et les groupes exceptionnels \(\textup{E}_6\) et \(\textup{E}_7\), Bull. Acad. Roy. Belg. Sci. 40 (1954), 29-40. · Zbl 0055.13903
[95] J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 223 – 237 (French). · Zbl 0139.03204
[96] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. · Zbl 0295.20047
[97] V. S. Varadarajan, Geometry of quantum theory, 2nd ed., Springer-Verlag, New York, 1985. · Zbl 0581.46061
[98] E. B. Vinberg, A construction of exceptional simple Lie groups (Russian), Tr. Semin. Vektorn. Tensorn. Anal. 13 (1966), 7-9.
[99] Max Zorn, Theorie der alternativen Ringe, Abh. Math. Sem. Univ. Hamburg 8 (1930), 123-147.
[100] Max Zorn, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. Hamburg 9 (1933), 395-402.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.