Berezansky, Leonid; Braverman, Elena On oscillation of a food-limited population model with time delay. (English) Zbl 1026.34075 Abstr. Appl. Anal. 2003, No. 1, 55-66 (2003). Explicit oscillation and nonoscillation conditions for the scalar nonlinear delay differential equation \[ N'(t)=r(t)N(t)\frac{K-N(h(t))}{K+s(t)N(g(t))} \] are established, where \(r(t)\geq 0\), \(s(t)\geq 0\) are Lebesgue measurable locally essentially bounded functions, \(h,g:[0,+\infty)\to \mathbb{R}\) are Lebesgue measurable functions, \(h(t)\leq t\), \(g(t)\leq t\),\(\lim_{t\to +\infty}h(t)=+\infty\), \(\lim_{t\to +\infty}g(t)=+\infty\), and \(K>0\). Some generalization of the above-mentioned equation is considered, too. Reviewer: Robert Hakl (Brno) Cited in 8 Documents MSC: 34K11 Oscillation theory of functional-differential equations 92D25 Population dynamics (general) Keywords:oscillation criteria; nonoscillation criteria PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{E. Braverman}, Abstr. Appl. Anal. 2003, No. 1, 55--66 (2003; Zbl 1026.34075) Full Text: DOI EuDML OpenURL