zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solvability of a nonlinear integral equation of Volterra type. (English) Zbl 1026.45006
The paper investigates a class of Volterra integral equations, in particular their solvability in the space of continuous and bounded functions on $R_+$, using the technique associated with measures of noncompactness. The findings are illustrated with several examples.

45G10Nonsingular nonlinear integral equations
47H09Mappings defined by “shrinking” properties
Full Text: DOI
[1] Argyros, I. K.: Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. austral. Math. soc. 32, 275-292 (1985) · Zbl 0607.47063
[2] Banás, J.; Goebel, K.: Measures of noncompactness in Banach spaces. Lecture notes in pure and applied mathematics 60 (1980)
[3] Banás, J.; Lecko, M.; El-Sayed, W. G.: Existence theorems for some quadratic integral equations. J. math. Anal. appl. 222, 276-285 (1998) · Zbl 0913.45001
[4] Banás, J.; Rodríguez, J. R.; Sadarangani, K.: On a class of Urysohn--Stieltjes quadratic integral equations and their applications. J. comput. Appl. math. 113, 35-50 (2000) · Zbl 0943.45002
[5] Banás, J.; Rodríguez, J. R.; Sadarangani, K.: On a nonlinear quadratic integral equation of Urysohn--Stieltjes type and its applications. Nonlinear anal. 47, 1175-1186 (2001) · Zbl 1042.45502
[6] Banás, J.; Sadarangani, K.: Solvability of Volterra--Stieltjes operator-integral equations and their applications. Comput. math. Appl. 41, 1535-1544 (2001) · Zbl 0986.45006
[7] Case, K. M.; Zweifel, P. F.: Linear transport theory. (1967) · Zbl 0162.58903
[8] Chandrasekhar, S.: Radiative transfer. (1950) · Zbl 0037.43201
[9] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040
[10] O’regan, D.; Meehan, M. M.: Existence theory for nonlinear integral and integrodifferential equations. (1998)