zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey of numerical techniques for solving singularly perturbed ordinary differential equations. (English) Zbl 1026.65059
Summary: This survey paper contains a surprisingly large amount of material and indeed can serve as an introduction to some of the ideas and methods of singular perturbation theory. Starting from Prandtl’s work a large amount of work has been done in the area of singular perturbations. This paper limits its coverage to some standard singular perturbation models considered by various workers and the numerical methods developed by numerous researchers after 1984-2000. The work done in this area during the period 1905-1984 has already been surveyed by the first author of this paper [Appl. Math. Comput. 30, No. 3, 223-259 (1989; Zbl 0678.65059)] for details. Due to the space constraints we have covered only singularly perturbed one-dimensional problems.

MSC:
65L10Boundary value problems for ODE (numerical methods)
65L05Initial value problems for ODE (numerical methods)
65-02Research monographs (numerical analysis)
34B05Linear boundary value problems for ODE
34A30Linear ODE and systems, general
34E15Asymptotic singular perturbations, general theory (ODE)
Software:
COLNEW
WorldCat.org
Full Text: DOI
References:
[1] Abrahamsson, L. R.; Keller, H. B.; Kreiss, H. O.: Difference approximations for singular perturbations of systems of ordinary differential equations. Numer. math. 22, 367-391 (1974) · Zbl 0314.65042
[2] Abrahamsson, L. R.: A priori estimates for solutions of singular perturbations with a turning point. Stud. appl. Math. 56, 51-69 (1977) · Zbl 0355.34048
[3] Abrahamsson, L.; Osher, S.: Monotone difference schemes for singular perturbation problems. SIAM J. Numer. anal. 19, 979-992 (1982) · Zbl 0507.65039
[4] Adeniyi, R. B.: A computational error estimate of the tau method for nonlinear ordinary differential equations. J. nigerian math. Soc. 9, 21-32 (1990)
[5] N. Adzic, On the spectral approximation for boundary value problems, VII Conference on Applied Mathematics (Osijek, 1989), Univ. Osijek, Osijek, 1990, pp. 1--11
[6] Adzic, N.: Some nonlinear SPP and spectral approximation. Novi sad J. Math. 28, No. 1, 37-46 (1998) · Zbl 1265.65138
[7] Ahlberg, J. H.; Nilson, E. N.; Walsh, J. L.: The theory of splines and their applications. (1967) · Zbl 0158.15901
[8] Alkahby, H. Y.: Acoustic-gravity waves in a viscous and thermally conducting isothermal atmosphere. Int. J. Math. math. Sci. 18, No. 2, 371-382 (1995) · Zbl 0835.76087
[9] Allen, D. N.; Southwell, R. V.: Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. appl. Math. 8, 129-145 (1955) · Zbl 0064.19802
[10] Amick, C. J.; Mcleod, J. B.: A singular perturbation problem in needle crystals. Arch. rational mech. Anal. 109, No. 2, 139-171 (1990) · Zbl 0695.34060
[11] Ardema, M. D.: Singular perturbations in systems and control. (1983) · Zbl 0513.93031
[12] Ascher, U.; Christiansen, J.; Russell, R. D.: A collocation solver for mixed order systems of boundary value problems. Math. comput. 33, No. 146, 659-679 (1979) · Zbl 0407.65035
[13] U. Ascher, J. Christiansen, R.D. Russell, COLSYS-A collocation code for boundary value problems in ordinary differential equations, in: W. Childs et al. (Eds.), Lecture Notes in Computer Science, vol. 76, Springer, New York, 1979, pp. 164--185 · Zbl 0459.65061
[14] U. Ascher, Two families of symmetric difference schemes for singular perturbation problems, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 173--191 · Zbl 0568.65053
[15] Ascher, U. M.; Mattheij, R. M. M.; Russell, R. D.: Numerical solution of boundary value problems for ordinary differential equations. (1988) · Zbl 0671.65063
[16] Assiff, T. C.; Yen, D. H. Y.: On the solutions of clamped Reissner--Mindlin plates under transverse loads. Quart. appl. Math. 45, No. 4, 679-690 (1987) · Zbl 0627.73062
[17] Axelsson, O.; Frank, L. S.; Van Der, S.: Analytical and numerical approaches to asymptotic problems in analysis. (1981) · Zbl 0441.00011
[18] Axelsson, O.; Nikolova, M.: Adaptive refinement for convection--diffusion problems based on a defect-correction technique and finite difference method. Computing 58, No. 1, 1-30 (1997) · Zbl 0876.35009
[19] Bader, G.; Usher, U.: A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. statist. Comput. 8, 483-500 (1987) · Zbl 0633.65084
[20] Bamigbola, O. M.; Ibiejugba, M. A.; Onumanyi, P.: Higher order Chebyshev basis functions for two-point boundary value problems. Int. J. Numer. meth. Eng. 26, No. 2, 313-327 (1988) · Zbl 0655.65100
[21] Bassanini, P.; Elcrat, A. R.: Separated flow past three-dimensional bodies as a singular perturbation problem. J. eng. Math. 23, 187-202 (1989) · Zbl 0699.76046
[22] Bellman, R.; Kalaba, R.: Quasilinearization and nonlinear boundary value problems. (1965) · Zbl 0139.10702
[23] Bender, C. M.; Orszag, S. A.: Advanced mathematical methods for scientists and engineers. (1978) · Zbl 0417.34001
[24] Berger, A. E.; Solomon, J. M.; Ciment, M.; Leventhal, S. H.; Weinberg, B. C.: Generalized operator compact implicit schemes for boundary layer problems. Math. comput. 35, 695-731 (1980)
[25] Berger, A. E.: A conservative uniformly accurate difference method for a singular perturbation problem in conservation form. SIAM J. Numer. anal. 23, No. 6, 1241-1253 (1986) · Zbl 0621.65090
[26] Y.P. Boglaev, A.A. Stanilovskii, Bibliography of numerical methods of solving singularly perturbed problems (Russian), Preprint, Inst. Fiz. Tverd. Tela Akad. Nauk SSR Chernogolovka, 1984
[27] I.P. Boglaev, Numerical integration of initial value problems for systems with a small parameter multiplying the derivative, Zh. Vychisl. Mat.-i-Mat. Fiz. 27 (1) (1987) 63--75, 158, 159 · Zbl 0615.65073
[28] I.P. Boglaev, V.V. Sirotkin, Domain decomposition technique for singularly perturbed problems and its parallel implementation, in: Computational and Applied Mathematics, vol. II (Dublin, 1991), North-Holland, Amsterdam, 1992, pp. 259--268 · Zbl 0766.65097
[29] Boglaev, I. P.; Sirotkin, V. V.: Computational method for a singular perturbation problem via domain decomposition and its parallel implementation. Appl. math. Comput. 56, No. 1, 71-95 (1993) · Zbl 0776.65055
[30] C.M. Brauner, B. Gay, J. Mathieu (Eds.), Singular Perturbations and Boundary Layer Theory, Lecture Notes in Mathematics, vol. 594, Springer, Berlin, 1977 · Zbl 0347.00006
[31] D.L. Brown, A numerical method for singular perturbation problems with turning points, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 193--205 · Zbl 0573.65065
[32] Burrage, K.; Chan, R. P. K.: On smoothing and order reduction effects for implicit Runge--Kutta formulae. J. comput. Appl. math. 45, No. 1/2, 17-27 (1993) · Zbl 0802.65088
[33] Carrier, G. F.; Pearson, C. E.: Ordinary differential equations. (1968) · Zbl 0165.40601
[34] J. Carroll, J.J.H. Miller, Completely exponentially fitted finite difference schemes for some singular perturbation problems, in: Boundary and Interior Layers -- Computational and Asymptotic Methods, Proc. Conf., Trinity College, Dublin, 1980; Boole, Dun Laoghaire, 1980, pp. 225--230
[35] Cash, J. R.; Singhal, A.: Mono-implicit Runge--Kutta formulae for the numerical integration of stiff differential equations. IMA J. Numer. anal. 2, 211-227 (1982) · Zbl 0488.65031
[36] Cash, J. R.; Singhal, A.: High-order methods for the numerical solution of two-point boundary value problems. Bit 22, 184-199 (1982) · Zbl 0494.65049
[37] Cash, J. R.: On the numerical integration of nonlinear two point boundary value problems using iterated deferred corrections. I. A survey and comparison of some one-step formulae. Comput. math. Appl. 12, 1029-1048 (1986) · Zbl 0618.65071
[38] Cash, J. R.: On the numerical integration of nonlinear two point boundary value problems using iterated deferred corrections. II. the development and analysis of highly stable deferred correction formulae. SIAM J. Numer. anal. 25, 862-882 (1988) · Zbl 0658.65070
[39] Cash, J. R.: A comparison of some global methods for solving two-point boundary value problems. Appl. math. Comput. 31, 449-462 (1989) · Zbl 0675.65075
[40] Cash, J. R.; Wright, M. H.: A deferred correction method for nonlinear two point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. statist. Comput. 12, 971-989 (1991) · Zbl 0727.65070
[41] Cash, J. R.; Moore, G.; Wright, R. W.: An automatic continuation strategy for the solution of singularly perturbed linear two-point boundary value problems. J. comput. Phys. 122, No. 2, 266-279 (1995) · Zbl 0840.65084
[42] Cash, J. R.: Runge--Kutta methods for the solution of stiff two-point boundary value problems. Appl. numer. Math. 22, No. 1--3, 165-177 (1996) · Zbl 0867.65043
[43] Chang, K. W.; Howes, F. A.: Nonlinear singular perturbation phenomena: theory and application. (1984) · Zbl 0559.34013
[44] B. Childs, M. Scott, J. Daniel, W.E. Denman, P. Nelson (Eds.), Codes for Boundary Value Problems in Ordinary Differential Equations, Lecture Notes in Computer Science, vol. 76, Springer, Berlin, 1979 · Zbl 0416.00006
[45] Clavero, C.; Lisbona, F.: Uniformly convergent finite difference methods for singularly perturbed problems with turning points. Numer. algorithms 4, No. 4, 339-359 (1993) · Zbl 0790.65074
[46] Dahlquist, G.; Edsberg, L.; Skollermo, G.; Solderlind, G.: Are the numerical methods and software satisfactory for chemical kinetics?. Numerical integration of DE and large linear systems, 149-164 (1982)
[47] De Hoog, F. R.; Mattheij, R. M. M.: On dichotomy and well conditioning in BVP. SIAM J. Numer. anal. 24, No. 1, 89-105 (1987) · Zbl 0629.65084
[48] De-Jager, E. M.; Kupper, T.: The Schrödinger equation as a singular perturbation problem. Proc. R. Soc. Edinburgh, sect. A 82, No. 1--2, 1-11 (1978/79)
[49] Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations. (1988) · Zbl 0662.65111
[50] Dickmanns, E. D.; Well, K. H.: Approximate solution of optimal control problems using third order Hermite polynomial functions. Lect. notes comput. Sci. 27, 155-166 (1975)
[51] L. Dieci, R.D. Russell, Riccati and other methods for singularly perturbed BVP, in: BAIL IV (Novosibirsk), Boole, Dun Laoghaire, 1986, pp. 27--38 · Zbl 0672.65072
[52] Dieci, L.; Osborne, M. R.; Russell, R. D.: A Riccati transformation method for solving linear BVPs I. Theoretical aspects. SIAM J. Numer. anal. 25, No. 5, 1055-1073 (1988) · Zbl 0664.65074
[53] Dieci, L.; Osborne, M. R.; Russell, R. D.: A Riccati transformation method for solving linear BVPs II. Computational aspects. SIAM J. Numer. anal. 25, No. 5, 1074-1092 (1988) · Zbl 0664.65075
[54] Dingle, R. B.: Asymptotic expansions: their derivation and interpretation. (1973) · Zbl 0279.41030
[55] Doedel, E. J.: The construction of finite-difference approximations to ordinary differential equations. SIAM J. Numer. anal. 15, 450-465 (1978) · Zbl 0387.65047
[56] Doolan, E. P.; Miller, J. J. H.; Schilders, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. (1980) · Zbl 0459.65058
[57] Eckhaus, W.: Matched asymptotic expansions and singular perturbations. (1973) · Zbl 0255.34002
[58] Eckhaus, W.: Asymptotic analysis of singular perturbations. (1973) · Zbl 0255.34002
[59] W. Eckhaus, E.M. de Jager (Eds.), Theory and Applications of Singular Perturbations, Lecture Notes in Mathematics, vol. 942, Springer, Berlin, 1982 · Zbl 0478.00011
[60] Eisen, H.; Heinrichs, W.: A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. anal. 29, No. 1, 107-122 (1992) · Zbl 0747.65064
[61] El-Mistikawy, T. M.; Welre, M. J.: Numerical methods for boundary layers with blowing -- the exponential box scheme. Aiaa j. 16, 749-751 (1978) · Zbl 0383.76018
[62] W.H. Enright, Improving the performance of numerical methods for two-point boundary value problems, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 107--119 · Zbl 0576.65077
[63] Erdelyi, A.: Asymptotic expansions. (1956)
[64] P.A. Farrell, Uniformly convergent difference schemes for singularly perturbed turning and non-turning point problems, Ph.D. Thesis, Trinity College, Dublin, 1983
[65] P.A. Farrell, Criteria for uniform convergence, in: BAIL IV (Novosibirsk), Boole, Dun Laoghaire, 1986, pp. 286--291 · Zbl 0672.65052
[66] Farrell, P. A.: Sufficient conditions for uniform convergence of a class of difference schemes for a singularly perturbed problem. IMA J. Numer. anal. 7, No. 4, 459-472 (1987) · Zbl 0644.34044
[67] P.A. Farrell, A. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, On a fitted operator technique for singular perturbation equations, in: Finite Difference Methods: Theory and Applications (Rousse, 1997), Nova Sci., Commack, New York, 1999, pp. 71--78 · Zbl 0968.65077
[68] Friedrichs, K. O.; Wasow, W.: Singular perturbations of nonlinear oscillations. Duke math. J. 13, 367-381 (1946) · Zbl 0061.19509
[69] Garbey, M.: A Schwarz alternating procedure for singular perturbation problems. SIAM J. Sci. comput. 17, No. 5, 1175-1201 (1996) · Zbl 0865.65087
[70] Jr., E. C. Gartland: Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem. Math. comput. 48, No. 178, 551-564 (1987) · Zbl 0621.65088
[71] Jr., E. C. Gartland: An analysis of a uniformly convergent finite difference/finite element scheme for a model singular-perturbation problem. Math. comput. 51, No. 183, 93-106 (1988) · Zbl 0657.65100
[72] Jr., E. C. Gartland: Strong uniform stability and exact discretizations of a model singular perturbation problem and its finite-difference approximations. Appl. math. Comput. 31, 473-485 (1989) · Zbl 0681.65059
[73] Gasparo, M. G.; Macconi, M.: New initial-value method for singularly perturbed boundary value problems. J. optim. Theory appl. 63, No. 2, 213-224 (1989) · Zbl 0664.65083
[74] Gasparo, M. G.; Macconi, M.: Initial-value methods for second-order singularly perturbed boundary value problems. J. optim. Theory appl. 66, No. 2, 197-210 (1990) · Zbl 0681.34018
[75] Giovangigli, V.: Nonadiabatic plane laminar flames and their singular limits. SIAM J. Math. anal. 21, No. 5, 1305-1325 (1990) · Zbl 0714.34042
[76] Gonzalez, P. S.; Casasus, L.; Gonzalez, V. P.: A numerical scheme to approximate the solution of a singularly perturbed nonlinear differential equation. J. comput. Appl. math. 35, No. 1--3, 217-225 (1991)
[77] Grasman, J.: Small random perturbations of dynamical systems with applications in population genetics. Lect. notes math. 711, 158-175 (1979)
[78] Grekov, L. D.; Krasnikov, V. M.: FD method of arbitrary uniform order of accuracy for solving singularly perturbed boundary problems for second-order ordinary differential equations. J. math. Sci. 77, No. 5, 3420-3425 (1995) · Zbl 0839.65081
[79] Hemker, P. W.: A numerical study of stiff two-point boundary problems. (1977) · Zbl 0426.65043
[80] Hemker, P. W.; Miller, J. J. H.: Numerical analysis of singular perturbation problems. (1979) · Zbl 0407.00011
[81] Herceg, D.; Vulanović, R.; Petrovic, N.: Higher order schemes and Richardson extrapolation for singular perturbation problems. Bull. austral. Math. soc. 39, No. 1, 129-139 (1989) · Zbl 0653.65061
[82] Herceg, D.: Uniform fourth order difference scheme for a singular perturbation problem. Numer. math. 56, No. 7, 675-693 (1990) · Zbl 0668.65060
[83] Herceg, D.: On the numerical solution of a singularly perturbed nonlocal problem. Zb. rad. Prirod. mat. Fak. ser. Mat. 20, No. 2, 1-10 (1990) · Zbl 0748.65062
[84] Heinrichs, W.: A stabilized multidomain approach for singular perturbation problems. J. sci. Comput. 7, No. 2, 95-125 (1992) · Zbl 0757.76037
[85] Holmes, M. H.: Introduction to perturbation methods. (1995) · Zbl 0830.34001
[86] Hu, X. C.; Manteuffel, T. A.; Mccormick, S.; Russell, T. F.: Accurate discretization for singular perturbations: the one-dimensional case. SIAM J. Numer. anal. 32, No. 1, 83-109 (1995) · Zbl 0828.65100
[87] Huang, W. Z.; Sloan, D. M.: A simple adaptive grid method in two demensions. SIAM J. Sci. comput. 15, No. 4, 776-797 (1994) · Zbl 0809.65096
[88] Hughes, T. J. R.: Finite element methods for convection dominated flows. (1979) · Zbl 0418.00017
[89] Ibrahim, M. A. K.; Temsah, R. S.: Spectral methods for some singularly perturbed problems with initial and boundary layers. Int. J. Comput. math. 25, 33-48 (1988) · Zbl 0661.65082
[90] V.N. Ignatev, A.I. Zadorin, Some methods for the numerical solution of a nonlinear singularly perturbed boundary value problem, Preprint, vol. 677, Akad. Nauk SSSR Sibirsk. Otdel., Vychisl. Tsentr, Novosibirsk, 1986, 28 pp
[91] In, Il’a.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. notes 6, 596-602 (1969) · Zbl 0191.16904
[92] Imanaliev, M. I.; Pankov, P. S.: The phenomenon of a withdrawing boundary layer in the theory of singularly perturbed ordinary differential equations. Dokl. akad. Nauk 333, No. 5, 575-577 (1993) · Zbl 0826.34052
[93] E. Ishiwata, Y. Muroya, Improved SOR-like method with orderings for non-symmetric linear equations derived from singular perturbation problems, in: Numerical Analysis of Ordinary Differential Equations and Its Applications (Kyoto, 1994) World Scientific, River Edge, NJ, 1995, pp. 59--73
[94] Jain, M. K.; Aziz, T.: Numerical solution of stiff and convection--diffusion equations using adaptive spline function approximation. Appl. math. Modelling 7, 57-63 (1983) · Zbl 0512.65083
[95] Kadalbajoo, M. K.; Reddy, Y. N.: The method of inner boundary condition: a new approach for solving singular perturbation problems. J. comput. Phys. 62, No. 2, 349-360 (1986) · Zbl 0585.65057
[96] Kadalbajoo, M. K.; Reddy, Y. N.: Numerical integration of a class of singular perturbation problems. J. optim. Theory appl. 51, No. 3, 441-452 (1986) · Zbl 0579.65081
[97] Kadalbajoo, M. K.; Reddy, Y. N.: Approximate method for the numerical solution of singular perturbation problems. Appl. math. Comput. 21, No. 3, 185-199 (1987) · Zbl 0626.65075
[98] Kadalbajoo, M. K.; Reddy, Y. N.: Numerical solution of singular perturbation problems via deviating arguments. Appl. math. Comput. 21, No. 3, 221-232 (1987) · Zbl 0626.65076
[99] Kadalbajoo, M. K.; Reddy, Y. N.: Numerical solution of singular perturbation problems by a terminal boundary value technique. J. optim. Theory appl. 52, No. 2, 243-254 (1987) · Zbl 0586.65056
[100] Kadalbajoo, M. K.; Reddy, Y. N.: Initial-value technique for a class of nonlinear singular perturbation problems. J. optim. Theory appl. 53, No. 3, 395-406 (1987) · Zbl 0594.34017
[101] Kadalbajoo, M. K.; Reddy, Y. N.: A nonasymptotic method for singular perturbation problems. J. optim. Theory appl. 55, No. 1, 73-84 (1987) · Zbl 0626.34065
[102] Kadalbajoo, M. K.; Reddy, Y. N.: A boundary value method for a class of nonlinear singular perturbation problems. Commun. appl. Numer. meth. 4, No. 4, 587-594 (1988) · Zbl 0648.65066
[103] Kadalbajoo, M. K.; Reddy, Y. N.: Asymptotic and numerical analysis of singular perturbation problems: a survey. Appl. math. Comput. 30, 223-259 (1989) · Zbl 0678.65059
[104] Kadalbajoo, M. K.; Bawa, R. K.: Numerical solution of singularly perturbed initial value problems using fourth order cubic spline method. Int. J. Comput. math. 46, 87-95 (1992) · Zbl 0812.65057
[105] Kadalbajoo, M. K.; Bawa, R. K.: Third-order variable-mesh cubic spline methods for singularly-perturbed boundary-value problems. Appl. math. Comput. 59, No. 2--3, 117-129 (1993) · Zbl 0790.65071
[106] Kadalbajoo, M. K.; Rao, A.; Parallel, A.: Parallel discrete invariant embedding algorithm for singular perturbation problems. Int. J. Comput. math. 66, No. 1--2, 149-161 (1998) · Zbl 0889.65086
[107] M.K. Kadalbajoo, K.C. Patidar, Numerical solution of singularly perturbed two point boundary value problems by spline in compression, Int. J. Comput. Math., 77(2) (2001) 263--284 · Zbl 0984.65073
[108] M.K. Kadalbajoo, K.C. Patidar, Spline approximation method for solving self-adjoint singular perturbation problems on non-uniform grids, J. Comput. Anal. Appl., to appear · Zbl 1038.65066
[109] M.K. Kadalbajoo, K.C. Patidar, Variable mesh spline approximation method for solving singularly perturbed turning point problems having boundary layer(s), Comput. Math. Appl., to appear · Zbl 1003.65085
[110] Kalachev, L. V.; Mattheij, R. M. M.: On optimally scaled systems for second-order scalar singularly perturbed problems. Appl. math. Comput. 68, No. 1, 71-93 (1995) · Zbl 0821.65058
[111] Kamowitz, D.; Parter, S. V.: A study of some multigrid ideas. Appl. math. Comput. 17, 153-184 (1985) · Zbl 0608.65050
[112] Kamowitz, D.: Multigrid applied to singular perturbation problems. Appl. math. Comput. 25, No. 2, 145-174 (1988) · Zbl 0639.65050
[113] Kaplaun, S.: Fluid mechanics and singular perturbations. (1967)
[114] Kellogg, R. B.: Some singular perturbation problems in renel models. J. math. Anal. appl. 128, 214-240 (1987) · Zbl 0676.76104
[115] Kevorkian, J.; Cole, J. D.: Perturbation methods in applied mathematics. (1981) · Zbl 0456.34001
[116] Kevorkian, J.; Cole, J. D.: Multiple scale and singular perturbation methods. (1996) · Zbl 0846.34001
[117] Kokotovic, P. V.: Application of singular perturbation techniques to control problems. SIAM rev. 26, No. 4, 501-550 (1984)
[118] Kopteva, N. V.: On the convergence, uniform with respect to the small parameter, of a scheme with central difference on refined grids. Comput. math. Math. phys. 39, No. 10, 1594-1610 (1999) · Zbl 0977.65064
[119] Kramer, M. E.; Mattheij, R. M. M.: Application of global methods in parallel shooting. SIAM J. Numer. anal. 30, No. 6, 1723-1739 (1993) · Zbl 0801.65072
[120] Kurina, G. A.: Singular perturbations of control problems with equation of state not solved for the derivative (a survey). J. comput. Syst. sci. Int. 31, No. 6, 17-45 (1993) · Zbl 0800.93552
[121] Lee, J. Y.; Greengard, L.: A fast adaptive numerical method for stiff two-point boundary value problems. SIAM J. Sci. comput. 18, No. 2, 403-429 (1997) · Zbl 0882.65066
[122] Lentini, M.; Pereyra, V.: A variable order finite difference method for nonlinear multipoint boundary value problems. Math. comput. 28, 981-1004 (1974) · Zbl 0308.65054
[123] Lin, P. C.; Jiang, B. X.: A singular perturbation problem for periodic boundary differential equation. Appl. math. Mech. 8, No. 10, 929-937 (1987) · Zbl 0663.34037
[124] Lin, P.: A class of variational difference schemes for a singular perturbation problem. Appl. math. Mech. 10, No. 4, 353-359 (1989) · Zbl 0732.65075
[125] Lin, P.; Su, Y.: Numerical solution of quasilinear singularly perturbed ordinary differential equation without turning points. Appl. math. Mech. 10, No. 11, 1005-1010 (1989) · Zbl 0735.34041
[126] Lin, P.: A numerical method for quasilinear singular perturbation problems with turning points. Computing 46, 155-164 (1991) · Zbl 0737.65069
[127] Liseikin, V. D.; Petrenko, V. E.: On numerical solution of nonlinear singularly perturbed problems. Sov. math. Dokl. 36, No. 3, 535-538 (1988) · Zbl 0658.65074
[128] Liu, W. B.; Shen, J.: A new efficient spectral Galerkin method for singular perturbation problems. J. sci. Comput. 11, No. 4, 411-437 (1996) · Zbl 0891.76066
[129] Lo, L. L.: The meniscus on a needle -- a lesson in matching. J. fluid mech. 132, 65-78 (1983) · Zbl 0554.76038
[130] Lorenz, J.: Analysis of difference schemes for a stationary shock problem. SIAM J. Numer. anal. 21, 1038-1053 (1984) · Zbl 0574.65103
[131] Lynch, R. E.; Rice, J. R.: A high-order difference method for differential equations. Math. comput. 34, 333-372 (1980) · Zbl 0424.65037
[132] M.R. Maier, Numerical solution of singular perturbed boundary value problems using a collocation method with tension splines, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 207--225 · Zbl 0576.65088
[133] Markowich, P. A.; Ringhofer, C. A.: A singularly perturbed boundary value problem modelling a semiconductor device. SIAM J. Appl. math. 44, No. 2, 231-256 (1984) · Zbl 0559.34058
[134] P.A. Markowich, A finite difference method for the basic stationary semiconductor device equations, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 285--301
[135] R.M.M. Mattheij, P.M. van-Loon, A new approach to turning point theory, BAIL V (Shanghai, 1988), Boole, Dun Laoghaire, 1988, pp. 251--256 · Zbl 0679.34067
[136] Mazzia, F.; Trigiante, D.: Numerical solution of singular perturbation problems. Calcolo 30, No. 4, 355-369 (1993) · Zbl 0819.65113
[137] Mccormick, S.; Runge, J.: Multigrid methods for variational problems. SIAM J. Numer. anal. 19, 924-929 (1982) · Zbl 0499.65032
[138] Meyer, R. E.; Parter, S. V.: Singular perturbations and asymptotics. (1980) · Zbl 0483.00009
[139] Miller, J. J. H.: Application of advanced computational methods for boundary and interior layers. (1993) · Zbl 0782.00036
[140] Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. anal. 15, No. 1, 89-99 (1995) · Zbl 0814.65082
[141] Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Fitted numerical methods for singular perturbation problems. (1996)
[142] Miranker, W. L.: Numerical methods for stiff equations and singular perturbation problems. (1981) · Zbl 0454.65051
[143] Morton, K. W.: Numerical solution of convection--diffusion problems. (1996) · Zbl 0861.65070
[144] Mulholland, L. S.; Huang, W. Z.; Sloan, D. M.: Pseudospectral solution of near-singular problems using numerical coordinate transformations based on adaptivity. SIAM J. Sci. comput. 19, No. 4, 1261-1289 (1998) · Zbl 0913.65101
[145] Na, T. Y.: Computational methods in engineering boundary value problems. (1979) · Zbl 0456.76002
[146] Natesan, S.; Ramanujam, M.: Initial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers. J. optim. Theory appl. 99, No. 1, 37-52 (1998) · Zbl 0983.34050
[147] Nayfeh, A. H.: Perturbation methods. (1973) · Zbl 0265.35002
[148] Nayfeh, A. H.: Introduction to perturbation techniques. (1981) · Zbl 0449.34001
[149] Nefedov, N. N.: On some singularly perturbed problems for viscous stratified fluid. J. math. Anal. appl. 131, 118-126 (1988) · Zbl 0663.76130
[150] Niederdrenk, K.; Yserentant, H.: Die gleichmässige stabilität singulär gestörter diskreter und kontinuierlicher randwertprobleme. Numer. math. 41, 223-253 (1983) · Zbl 0526.65065
[151] Niijima, K.: On a difference scheme of exponential type for a nonlinear singular perturbation problem. Numer. math. 46, No. 4, 521-539 (1985) · Zbl 0577.65070
[152] O’malley, R. E.: Introductions to singular perturbations. (1974)
[153] R.E. O’Malley, On the simultaneous use of asymptotic and numerical methods to solve nonlinear two-point problems with boundary and interior layers, in: Progress in Science and Computations, vol. 5, Numerical Boundary Value ODEs, Birkhäuser, Boston, MA, 1985, pp. 149--172
[154] O’malley, R. E.: Different perspectives on some singular perturbation problems. Acta cient. Venezolana 38, No. 5/6, 657-672 (1987)
[155] O’malley, R. E.: Singular perturbation methods for ordinary differential equations. (1991)
[156] O’riordan, E.; Stynes, M.: A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction--diffusion problem. Math. comput. 47, No. 176, 555-570 (1986) · Zbl 0625.65073
[157] O’riordan, E.; Stynes, M.: A uniform finite element method for a conservative singularly perturbed problem. J. comput. Appl. math. 18, No. 2, 163-174 (1987) · Zbl 0627.65094
[158] K.C. Patidar, Spline methods for the numerical solution of singular perturbation problems, Ph.D. Thesis, IIT Kanpur, India, 2001
[159] Pearson, C. E.: On a differential equation of boundary layer type. J. math. Phys. 47, 134-154 (1968) · Zbl 0167.15801
[160] Pearson, C. E.: On nonlinear ordinary differential equations of boundary layer type. J. math. Phys. 47, 351-358 (1968) · Zbl 0165.50503
[161] A.A. Pechenkina, Differential equations with a small parameter, Akad. Nauk SSSR, Ural. Nauchn. Tsentr Sverdlovsk, 1980, pp. 111--117 · Zbl 0489.34012
[162] Pena, M. L.: Asymptotic expansion for the initial value problem of the sunflower equation. J. math. Anal. appl. 143, No. 2, 471-479 (1989) · Zbl 0682.34006
[163] Pereyra, V.: Iterated deferred corrections for nonlinear boundary value problems. Numer. math. 11, 111-125 (1968) · Zbl 0176.15003
[164] Petrovic, N.: On a difference scheme for singular perturbation problems. Zb. rad. Prirod. mat. Fak. ser. Mat. 22, No. 2, 23-37 (1992)
[165] L. Prandtl, Uber Flussigkeits -- bewegung bei kleiner Reibung, Verhandlungen, III Int. Math. Kongresses Tuebner, Leipzig, 1905, pp. 484--491
[166] Quarteroni, A.; Valli, A.: Numerical approximation of partial differential equations. (1994) · Zbl 0803.65088
[167] Reusken, A.: Multigrid with matrix-dependent transfer operators for a singular perturbation problem. Computing 50, No. 3, 199-211 (1993) · Zbl 0779.65049
[168] Roos, H. G.: A second order monotone upwind scheme. Computing 36, No. 1/2, 57-67 (1986) · Zbl 0572.65063
[169] Roos, H. G.: Global uniformly convergent schemes for a singularly perturbed boundary-value problem using patched base spline-functions. J. comput. Appl. math. 29, No. 1, 69-77 (1990) · Zbl 0686.65048
[170] H.G. Roos, M. Stynes, A uniformly convergent discretization method for a fourth order singular perturbation problem, in: Extrapolation and Defect Correction (1990), Bonner Math. Schriften, vol. 228, Univ. Bonn, Bonn, 1991, pp. 30--40 · Zbl 0747.65066
[171] Roos, H. G.: Higher order uniformly convergent methods for singular perturbation problems. Comput. meth. Appl. mech. Eng. 116, No. 1--4, 273-280 (1994) · Zbl 0824.65079
[172] Roos, H. G.; Stynes, M.; Tobiska, L.: Numerical methods for singularly perturbed differential equations. (1996) · Zbl 0844.65075
[173] Russo, M. F.; Peskin, R. L.: Automatically identifying the asymptotic behavior of nonlinear singularly perturbed boundary value problems. J. automat. Reason. 8, No. 3, 395-419 (1992) · Zbl 0759.68041
[174] Sakai, M.; Usmani, R. A.: On exponential splines. J. approx. Theory 47, 122-131 (1986) · Zbl 0603.41007
[175] Sakai, M.; Usmani, R. A.: A class of simple exponential B-splines and their application to numerical solution to singular perturbation problems. Numer. math. 55, No. 5, 493-500 (1989) · Zbl 0676.65088
[176] Schmeiser, C.; Weiss, R.: Asymptotic analysis of singularly perturbed boundary value problems. SIAM J. Numer. anal. 17, 560-579 (1986) · Zbl 0595.34019
[177] Schmitt, B. A.: An algebraic approximation for the matrix exponential in singularly perturbed boundary value problems. SIAM J. Numer. anal. 27, No. 1, 51-66 (1990) · Zbl 0689.65056
[178] Schmitt, B. A.; Mei, Z.: Construction of higher-order algebraic one-step schemes in stiff BVPs. Appl. numer. Math. 13, No. 1--3, 199-208 (1993) · Zbl 0790.65060
[179] Schneider, S.: Convergence results for general linear methods on singular perturbation problems. Bit 33, No. 4, 670-686 (1993) · Zbl 0795.65045
[180] Schuss, Z.: Theory and applications of stochastic differential equations. (1980) · Zbl 0439.60002
[181] Selvakumar, K.: A computational method for solving singular perturbation problems using exponentially fitted finite difference schemes. Appl. math. Comput. 66, No. 2/3, 277-292 (1994) · Zbl 0821.65057
[182] Shepherd, J. J.: Cocurrent flow in a bubble-column reactor at high Péclet numbers. SIAM J. Math. anal. 14, No. 1, 38-46 (1983) · Zbl 0515.34047
[183] S.N. Sklyar, Decomposition of a bilinear form and its use in the discretization of singularly perturbed boundary value problems, Izv. Akad. Nauk Kirgiz. SSR 1 (1988) 3--13, 105 · Zbl 0658.65078
[184] Sobolev, V. A.: Singular perturbations in linearly quadratic optimal control problems. Automat. remote control 52, No. 2, part I, 180-189 (1991) · Zbl 0737.49025
[185] Stojanovic, M.: A uniformly accurate spline collocation method for a singular perturbation problem. Calcolo 27, No. 1/2, 81-88 (1990) · Zbl 0738.65071
[186] Stojanovic, M.: Exponential splines difference scheme for singular perturbation problem with mixed boundary conditions. Comm. appl. Numer. meth. 7, No. 8, 625-632 (1991) · Zbl 0753.65068
[187] Stojanovic, M.: Uniform finite elements method for singular perturbation problem. Math. balkanica (New-series) 6, No. 1, 3-12 (1992) · Zbl 0830.65081
[188] Strehmel, K.; Weiner, R.: B-convergence results for linearly implicit one step methods. Bit 27, 264-281 (1987) · Zbl 0621.65064
[189] Strehmel, K.; Weiner, R.; Dannehl, I.: On error behaviour of partitioned linearly implicit Runge--Kutta methods for stiff and differential algebraic systems. Bit 30, No. 2, 358-375 (1990) · Zbl 0702.65073
[190] Stynes, M.; O’riordan, E.: A uniformly accurate finite element method for a singular perturbation problem in conservative form. SIAM J. Numer. anal. 23, No. 2, 369-375 (1986) · Zbl 0595.65091
[191] Stynes, M.; O’riordan, E.: A finite element method for a singularly perturbed boundary value problem. Numer. math. 50, 1-15 (1986) · Zbl 0583.65054
[192] Stynes, M.; O’riordan, E.: L1 and L$\infty $uniform convergence of a difference scheme for a semilinear singular perturbation problem. Numer. math. 50, No. 5, 519-531 (1987) · Zbl 0595.65092
[193] Stynes, M.: An adaptive uniformly convergent numerical method for a semilinear singular perturbation problem. SIAM J. Numer. anal. 26, No. 2, 442-455 (1989) · Zbl 0685.65075
[194] Sun, X. D.; Wu, Q. G.: A coupling difference scheme for the numerical solution of a singular perturbation problem. Appl. math. Mech. 13, No. 11, 1009-1016 (1992) · Zbl 0771.65048
[195] K. Surla, V. Jerkovic, Some possibilities of applying spline collocations to singular perturbation problems, in: Numerical Methods and Approximation Theory, vol. II, Novi Sad, 1985, pp. 19--25
[196] Surla, K.; Stojanovic, M.: Solving singularly perturbed boundary-value problems by spline in tension. J. comput. Appl. math. 24, No. 3, 355-363 (1988) · Zbl 0664.65081
[197] K. Surla, D. Herceg, Exponential spline difference scheme for singular perturbation problem, in: Splines in Numerical Analysis (Weissig, 1989), Verlag, Berlin, 1989, pp. 171--180
[198] Szmolyan, P.: A singular perturbation analysis of the transient semiconductor device equation. SIAM J. Appl. math. 49, No. 4, 1122-1135 (1989) · Zbl 0699.35014
[199] Tang, T.; Trummer, M. R.: Boundary layer resolving pseudospectral methods for singular perturbation problems. SIAM J. Sci. comput. 17, No. 2, 430-438 (1996) · Zbl 0851.65058
[200] Uzelac, Z.; Surla, K.: A spline difference scheme for a singular perturbation problem. Z. angew. Math. mech. 68, No. 5, T424-T426 (1988) · Zbl 0682.65051
[201] Vajravelu, K.; Rollins, D.: On solutions of some unsteady flows over a continuous, moving, porous flat surface. J. math. Anal. appl. 153, No. 1, 52-63 (1990) · Zbl 0706.76054
[202] Van Dyke, M.: Perturbation methods in fluid mechanics. (1964) · Zbl 0136.45001
[203] F. Verhulst, Asymptotic Analysis, Lecture Notes in Mathematics, vol. 711, Springer, Berlin, 1979 · Zbl 0398.00006
[204] F. Verhulst, Asymptotic Analysis II, Lecture Notes in Mathematics, vol. 985, Springer, Berlin, 1983 · Zbl 0515.70014
[205] Vulanović, R.: On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh. Univ. u novom sadu zb. Rad. prirod. Mat. fak. Ser. mat. 13, 187-201 (1983) · Zbl 0573.65064
[206] R. Vulanović, A second order uniform method for singular perturbation problems without turning points, V Conference on Applied Mathematics, Ljubljana, 1986, pp. 183--194 · Zbl 0606.65057
[207] Vulanović, R.: High order monotone schemes for a nonlinear singular perturbation problem. Z. angew. Math. mech. 68, No. 5, T428-T430 (1988) · Zbl 0663.65082
[208] Vulanović, R.: A uniform numerical method for quasilinear singular perturbation problems without turning points. Computing 41, No. 1/2, 97-106 (1989) · Zbl 0664.65082
[209] Vulanović, R.: Finite-difference schemes for quasilinear singular perturbation problems. J. comput. Appl. math. 26, No. 3, 345-365 (1989) · Zbl 0681.65057
[210] Vulanović, R.: Some improvements of the nonequidistant engquist--osher scheme. Appl. math. Comput. 40, No. 2, 147-164 (1990) · Zbl 0723.65055
[211] Vulanović, R.: On numerical methods for quasilinear singular perturbation problems without turning points. Zb. rad. Prirod. mat. Fak. ser. Mat. 23, No. 1, 361-370 (1993) · Zbl 0812.65073
[212] R. Vulanović, P.A. Farrell, P. Lin, Numerical solution of nonlinear singular perturbation problems modelling chemical reactions, in: Applications of Advanced Computational Methods for Boundary and Interior Layers, Boole, Dublin, 1993, pp. 192--213 · Zbl 0786.65068
[213] Vulanović, R.: A uniform convergence result for semilinear singular perturbation problems violating the standard stability condition. Appl. numer. Math. 16, No. 3, 383-399 (1995) · Zbl 0820.65048
[214] R. Vulanović, Numerical methods for quadratic singular perturbation problems, in: Collection: Proceedings of Dynamic Systems and Applications, vol. 2 (Atlanta, GA, 1995), Dynamic, Atlanta, GA, 1996, pp. 543--551 · Zbl 0861.65063
[215] Wang, G. Y.: The application of integral equations to the numerical solution of nonlinear singular perturbation problems. J. comput. Math. 12, No. 1, 36-45 (1994) · Zbl 0801.65071
[216] W. Wasow, On boundary layer problems in the theory of ordinary differential equations, Doctoral Dissertation, New York University, New York
[217] Wasow, W.: The capriciousness of singular perturbations. Nieuw arch. Wisk. 18, 190-210 (1970) · Zbl 0204.40603
[218] Willoughby, R. A.: Stiff differential systems. (1974) · Zbl 1261.65070
[219] Wolfe, P.: Deformation of rods with small bending stiffness. Quart. J. Mech. appl. Math. 46, No. 2, 311-330 (1993) · Zbl 0813.73031
[220] Zhang, S.: Optimal-order nonnested multigrid methods for solving finite element equations. III. on degenerate meshes. Math. comput. 64, No. 209, 23-49 (1995) · Zbl 0824.65124