×

FS-FOIL: An inductive learning method for extracting interpretable fuzzy descriptions. (English) Zbl 1026.68111

Summary: This paper is concerned with FS-FOIL – an extension of Quinlan’s First-Order Inductive Learning (FOIL) method. In contrast to the classical FOIL algorithm, FS-FOIL uses fuzzy predicates and, thereby, allows to deal not only with categorical variables, but also with numerical ones, without the need to draw sharp boundaries. This method is described in full detail along with discussions how it can be applied in different traditional application scenarios – classification, fuzzy modeling, and clustering. We provide examples of all three types of applications in order to illustrate the efficiency, robustness, and wide applicability of the FS-FOIL method.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

Software:

UCI-ml; FOIL; C4.5; ANFIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderberg, M. R., Cluster Analysis for Applications (1973), Academic Press: Academic Press New York · Zbl 0299.62029
[2] Babuška, R., Fuzzy Modeling for Control (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Boston
[3] Bayardo, R. J.; Agrawal, R., Mining the most interesting rules, (Chaudhuri, S.; Madigan, D., Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (1999), ACM: ACM New York), 145-154
[4] Bezdek, J. C.; Keller, J.; Krishnapuram, R.; Pal, N. K., (Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets, vol. 4 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston) · Zbl 0998.68138
[5] C.L. Blake, C.J. Merz, UCI repository of machine learning databases, University of California, Irvine, Department of Information and Computer Sciences, 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html; C.L. Blake, C.J. Merz, UCI repository of machine learning databases, University of California, Irvine, Department of Information and Computer Sciences, 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html
[6] Bodenhofer, U., The construction of ordering-based modifiers, (Brewka, G.; Der, R.; Gottwald, S.; Schierwagen, A., Fuzzy-Neuro Systems ’99 (1999), Leipziger Universitätsverlag), 55-62
[7] Bodenhofer, U., (A Similarity-Based Generalization of Fuzzy Orderings. A Similarity-Based Generalization of Fuzzy Orderings, Schriftenreihe der Johannes-Kepler-Universität Linz, vol. C 26 (1999), Universitätsverlag Rudolf Trauner)
[8] Bodenhofer, U., A similarity-based generalization of fuzzy orderings preserving the classical axioms, Int. J. Uncertain. Fuzziness Knowledge-Based Systems, 8, 5, 593-610 (2000) · Zbl 1113.03333
[9] U. Bodenhofer, P. Bauer, Towards an axiomatic treatment of “interpretability”, in: Proceedings of the 6th International Conference on Soft Computing (IIZUKA2000), Iizuka, October 2000, pp. 334-339; U. Bodenhofer, P. Bauer, Towards an axiomatic treatment of “interpretability”, in: Proceedings of the 6th International Conference on Soft Computing (IIZUKA2000), Iizuka, October 2000, pp. 334-339
[10] U. Bodenhofer, P. Bauer, A formal model of interpretability of linguistic variables, in: J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Trade-off between Accuracy and Interpretability in Fuzzy Rule-Based Modelling, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 2002 (to appear); U. Bodenhofer, P. Bauer, A formal model of interpretability of linguistic variables, in: J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Trade-off between Accuracy and Interpretability in Fuzzy Rule-Based Modelling, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 2002 (to appear)
[11] Bratko, I.; Muggleton, S., Applications of inductive logic programming, Commun. ACM, 38, 11, 65-70 (1995)
[12] J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Trade-off between Accuracy and Interpretability in Fuzzy Rule-Based Modelling, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 2002 (to appear); J. Casillas, O. Cordón, F. Herrera, L. Magdalena (Eds.), Trade-off between Accuracy and Interpretability in Fuzzy Rule-Based Modelling, Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, 2002 (to appear)
[13] Chiu, S. L., Fuzzy model identification based on cluster estimation, J. Intelligent and Fuzzy Systems, 2, 3 (1994)
[14] De Cock, M.; Bodenhofer, U.; Kerre, E. E., Modelling linguistic expressions using fuzzy relations, (Proceedings of the 6th International Conference on Soft Computing (IIZUKA2000), Iizuka (October 2000)), 353-360
[15] Draper, N. R.; Smith, H., Applied Regression Analysis (1981), Wiley: Wiley New York · Zbl 0548.62046
[16] Driankov, D.; Hellendoorn, H.; Reinfrank, M., An Introduction to Fuzzy Control (1993), Springer: Springer Heidelberg · Zbl 0789.93088
[17] M. Drobics, U. Bodenhofer, W. Winiwarter, Mining clusters and corresponding interpretable descriptions – a three-stage approach, Expert Systems 19 (3) (2002) (to appear); M. Drobics, U. Bodenhofer, W. Winiwarter, Mining clusters and corresponding interpretable descriptions – a three-stage approach, Expert Systems 19 (3) (2002) (to appear)
[18] Drobics, M.; Bodenhofer, U.; Winiwarter, W.; Klement, E. P., Data mining using synergies between self-organizing maps and inductive learning of fuzzy rules, (Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference (July 2001), Vancouver), 1780-1785
[19] Dubois, D.; Prade, H., What are fuzzy rules and how to use them, Fuzzy Sets and Systems, 84, 169-185 (1996) · Zbl 0905.03008
[20] Dubois, D.; Prade, H.; Ughetto, L., Fuzzy logic, control engineering and artificial intelligence, (Verbruggen, H. B.; Zimmermann, H.-J.; Babuška, R., Fuzzy Algorithms for Control. Fuzzy Algorithms for Control, International Series in Intelligent Technologies (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston), 17-57
[21] Frawley, W.; Piatetsky-Shapiro, G.; Matheus, C., Knowledge discovery in databases – an overview, AI Magazine, 13, 57-70 (1992)
[22] Gustafson, D. E.; Kessel, W. C., Fuzzy clustering with a fuzzy covariance matrix, (Proceedings of the IEEE International Conference on Decision and Control, San Diego, CA (1979)), 761-766 · Zbl 0448.62045
[23] Hájek, P., (Metamathematics of Fuzzy Logic. Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4 (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0937.03030
[24] Haslinger, J.; Bodenhofer, U.; Burger, M., Data-driven construction of Sugeno controllers: analytical aspects and new numerical methods, (Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference (July 2001), Vancouver), 239-244
[25] Hoeppner, F.; Klawonn, F.; Kruse, R.; Runkler, T. A., Fuzzy Cluster Analysis - Methods for Image Recognition, Classification, and Data Analysis (1999), Wiley: Wiley Chichester · Zbl 0944.65009
[26] Klawonn, F., Fuzzy sets and vague environments, Fuzzy Sets and Systems, 66, 207-221 (1994) · Zbl 0850.93440
[27] Klement, E. P.; Mesiar, R.; Pap, E., (Triangular Norms. Triangular Norms, Trends in Logic, vol. 8 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0972.03002
[28] Kohonen, T., Self-Organizing Maps (1997), Springer: Springer Berlin · Zbl 0866.68085
[29] Kruse, R.; Gebhardt, J.; Klawonn, F., Foundations of Fuzzy Systems (1994), Wiley: Wiley New York · Zbl 0843.68109
[30] Linde, Y.; Buzo, A.; Gray, R. M., An algorithm for vector quantizer design, IEEE Trans. Comm., 28, 1, 84-95 (1980)
[31] Mamdani, E. H., Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. Comput., 26, 1182-1191 (1977) · Zbl 0397.94025
[32] Mamdani, E. H.; Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud., 7, 1-13 (1975) · Zbl 0301.68076
[33] (McClelland, J. L.; Rumelhart, D. E., Parallel Distributed Processing - Exploration in the Microstructures of Cognition, Volume II: Psychological and Biological Models (1986), MIT Press: MIT Press Cambridge, MA)
[34] Michalski, R. S.; Bratko, I.; Kubat, M., Machine Learning and Data Mining (1998), Wiley: Wiley Chichester
[35] Michalski, R. S.; Stepp, R. E., Clustering, (Shapiro, S. C., Encyclopedia of Artificial Intelligence (1992), Wiley: Wiley Chichester), 168-176
[36] (Mitchell, T. M., Machine Learning (1997), McGraw Hill: McGraw Hill Dordrecht) · Zbl 0913.68167
[37] Muggleton, S.; De Raedt, L., Inductive logic programming: Theory and methods, J. Logic Program., 19&20, 629-680 (1994) · Zbl 0816.68043
[38] Novák, V.; Perfilieva, I.; Močkoř, J., Mathematical Principles of Fuzzy Logic (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0940.03028
[39] Perfilieva, I., Normal forms for fuzzy logic functions and their approximation ability, Fuzzy Sets and Systems, 124, 371-384 (2001) · Zbl 0994.03019
[40] Quinlan, J. R., Induction of decision trees, Machine Learning, 1, 1, 81-106 (1986)
[41] Quinlan, J. R., Learning logical definitions from relations, Machine Learning, 5, 3, 239-266 (1990)
[42] Quinlan, J. R., C4.5: Programs for Machine Learning (1993), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA
[43] Quinlan, J. R., Learning first-order definitions of functions, J. Artificial Intelligence Res., 5, 139-161 (1996) · Zbl 0900.68368
[44] Quinlan, J. R.; Cameron-Jones, R. M., Induction of logic programs: FOIL and related systems, New Generation Computing, 13, 287-312 (1995)
[45] Roger Jang, J.-S., ANFIS: Adaptive-network-based fuzzy inference systems, IEEE Trans. Systems Man Cybernet., 23, 3, 665-685 (1993)
[46] Rumelhart, D. E.; McClelland, J. L., Parallel Distributed Processing - Exploration in the Microstructures of Cognition, Volume I: Foundations C4.5: (1986), MIT Press: MIT Press Cambridge, MA
[47] Setnes, M.; Babuška, R., Fuzzy relational classifier trained by fuzzy clustering, IEEE Trans. Systems Man Cybernet., Part B: Cybernetics, 29, 5, 619-625 (1999)
[48] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems Man Cybernet., 15, 1, 116-132 (1985) · Zbl 0576.93021
[49] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 338-353 (1965) · Zbl 0139.24606
[50] Zadeh, L. A., Toward a theory of fuzzy systems, (Kalman, R. E.; De Claris, N., Aspects of Network and System Theory (1970), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York) · Zbl 1014.68543
[51] Zadeh, L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Systems Man Cybernet., 3, 1, 28-44 (1973) · Zbl 0273.93002
[52] Zurada, J. M., Introduction to Artificial Neural Networks (1992), West Publishing: West Publishing St. Paul
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.