Butzer, Paul L.; Kilbas, Anatoly A.; Trujillo, Juan J. Compositions of Hadamard-type fractional integration operators and the semigroup property. (English) Zbl 1027.26004 J. Math. Anal. Appl. 269, No. 2, 387-400 (2002). The well-known Liouville fractional integration on \(\mathbb{R}^1\) is invariant with respect to translations. The corresponding form of fractional integration on \(\mathbb{R}^1_+\) invariant with respect to dilations (obtained from the Liouville form by obvious logarithmic change of variables) is known as the Hadamard fractional integration, having been introduced by J. Hadamard in 1898. It has the form \[ J^\alpha_{0+} f=\frac{1}{\Gamma(\alpha)}\int_0^x\left(\log \frac{x}{u}\right)^{\alpha-1} \frac{f(u)du}{u}, \quad x>0 \tag{1} \] (see the presentation of this approach in the book by S. G. Samko, A. A. Kilbas and O. I. Marichev [“Fractional integrals and derivatives: theory and applications” (Russian) (1987; Zbl 0617.26004; English translation 1993; Zbl 0818.26003), Section 18.3]). The authors introduce a generalization of (1) in the form \[ J^\alpha_{0+,\mu;\gamma,\sigma}f=\frac{1}{\Gamma(\alpha)}\int_0^x\left(\frac{u}{x}\right)^\mu \left(\log \frac{x}{u}\right)^{\alpha-1} \Phi\left[\gamma,\alpha;\sigma log\frac{u}{x}\right]\frac{f(u)du}{u} , \quad x>0, \tag{2} \] keeping the kernel homogeneous of order \(-1\) so that the Mellin transform approach is applicable. The authors prove some analogues of the semigroup property for the operator (2). The right hand-sided version of (2) is also considered. Reviewer: Stefan G.Samko (Faro) Cited in 92 Documents MSC: 26A33 Fractional derivatives and integrals Keywords:fractional integrals; Hadamard fractional integration; semigroup property; Mellin transforms; special functions; Kummer function Citations:Zbl 0818.26003; Zbl 0617.26004 PDF BibTeX XML Cite \textit{P. L. Butzer} et al., J. Math. Anal. Appl. 269, No. 2, 387--400 (2002; Zbl 1027.26004) Full Text: DOI OpenURL References: [1] P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., doi: 10.1006/jmaa.2001.7820 · Zbl 0995.26007 [2] Hadamard, J., Essai sur l’etude des fonctions donnees par leur developpment de Taylor, J. mat. pure appl. ser. 4,, 8, 101-186, (1892) · JFM 24.0359.01 [3] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives. theory and applications, (1993), Gordon and Breach New York · Zbl 0818.26003 [4] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G., Higher transcendental functions, 1, (1953), McGraw-Hill New York, reprinted Krieger, Melbourne, FL, 1981 · Zbl 0052.29502 [5] Bennett, C.; Sharpley, R., Interpolation of operators, (1988), Academic Press Boston · Zbl 0647.46057 [6] Hille, E.; Phillips, R.S., Functional analysis and semigroups, Amer. math. soc. colloq. publ., 31, (1957), American Mathematical Society Providence, RI [7] Butzer, P.L.; Berens, H., Semi-groups of operators and approximation, (1967), Springer-Verlag Berlin · Zbl 0164.43702 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.