×

zbMATH — the first resource for mathematics

Existence theorems for inclusions of the type \(\psi(u)(t)\in F(t,\phi(u)(t))\). (English) Zbl 1027.47063
Existence results for operator inclusions in Banach spaces are studied. The obtained results are a generalization of earlier results proved by O. Naselli, B. Ricceri and the authors. The main tool for proving their results is the Ky Fan fixed point theorem.

MSC:
47J05 Equations involving nonlinear operators (general)
34A60 Ordinary differential inclusions
47H04 Set-valued operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubin J.P., Differential Inclusions (1984) · Zbl 0538.34007
[2] Aubin J.P., Applied Nonlinear Analysis (1984) · Zbl 0641.47066
[3] Averna D., Existence of solutions for operator inclusions: a unified approach 102 (1999) · Zbl 0936.47037
[4] Banaś J., Lecture Notes in Pure and Appl. Math 60 (1980)
[5] Bonanno G., Topol. Methods Nonlinear Anal 8 pp 263– (1996)
[6] DOI: 10.1007/BF01305758 · Zbl 0529.54013
[7] Brèzis H., Analyse Fonctionnelle- Thèorie et Applications (1983) · Zbl 0511.46001
[8] DOI: 10.1016/S0001-8708(77)80017-0 · Zbl 0354.46026
[9] Day M., Normed Linear Spaces (1962) · Zbl 0100.10802
[10] Dunford N., Linear Operators Part I (1958)
[11] Himmelberg C.J., Fund. Math 87 pp 53– (1975)
[12] Kuratowski K., Bull Polish Acad. Sci. Math 13 pp 397– (1965)
[13] DOI: 10.1017/S0004972700030112 · Zbl 0741.34008
[14] DOI: 10.1006/jmaa.1994.1088 · Zbl 0801.34031
[15] DOI: 10.1016/S0362-546X(97)00252-6 · Zbl 0891.35034
[16] DOI: 10.1080/00036819008839966 · Zbl 0687.47044
[17] Saks S., Theory of the Integral (1937) · Zbl 0017.30004
[18] DOI: 10.1112/plms/s3-57.3.511 · Zbl 0673.35005
[19] Tsalyuk V.Z., Math. Notes (Mat. Zametki) 43 pp 58– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.