zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bayesian measures of surprise for outlier detection. (English) Zbl 1027.62014
Summary: From a Bayesian point of view, testing whether an observation is an outlier is usually reduced to a testing problem concerning a parameter of a contaminating distribution. This requires elicitation of both (i) the contaminating distribution that generates the outlier and (ii) prior distributions on its parameters. However, very little information is typically available about how the possible outlier could have been generated. Thus easy, preliminary checks in which these assessments can often be avoided may prove useful. Several such measures of surprise are derived for outlier detection in normal models. Results are applied to several examples. Default Bayes factors, where the contaminating model is assessed but not the prior distribution, are also computed.

MSC:
62F15Bayesian inference
62F03Parametric hypothesis testing
Software:
BayesDA
WorldCat.org
Full Text: DOI
References:
[1] Abraham, B.; Box, G. E. P.: Linear models and spurious observations. Appl. statist. 27, 120-130 (1978) · Zbl 0435.62095
[2] Aitkin, M.: Posterior Bayes factors. J. roy. Statist. soc. Ser. B 53, 111-142 (1991) · Zbl 0800.62167
[3] Barnett, V.; Lewis, T.: Outliers in statistical data. (1996) · Zbl 0377.62001
[4] Bayarri, M.J., Berger, J.O., 1994. Robust Bayesian bounds for outlier detection. In: Vilaplana, J.P., Puri, M.L. (Eds.), Recent Advances in Statistics and Probability, North-Holland, Amsterdam, pp. 175--190. · Zbl 0839.62023
[5] Bayarri, M.J., Berger, J.O., 1997. Measures of surprise in Bayesian analysis. ISDS Discussion paper, 97-46, Duke University.
[6] Bayarri, M.J., Berger, J.O., 1999. Quantifying surprise in the data and model verification. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, Vol. 6. Oxford University Press, Oxford, pp. 53--82. · Zbl 0974.62021
[7] Bayarri, M. J.; Berger, J. O.: P-values for composite null models. J. amer. Statist. assoc. 95, 1127-1142 (2000) · Zbl 1004.62022
[8] Bayarri, M.J., Morales, J., 1999. Bayesian measures of surprise for outlier detection. ISDS Discussion paper, 99-38, Duke University.
[9] Berger, J. O.: Statistical decision theory and Bayesian analysis. (1985) · Zbl 0572.62008
[10] Berger, J. O.; Pericchi, L. R.: The intrinsic Bayes factor for model selection and prediction. J. amer. Statist. assoc. 91, 109-122 (1996) · Zbl 0870.62021
[11] Berger, J. O.; Sellke, T.: Testing a point null hypothesis: the irreconciability of significance levels and evidence. J. amer. Statist. assoc. 82, 112-122 (1987) · Zbl 0612.62022
[12] Berger, J. O.; Pericchi, L. R.; Varshavsky, J.: Bayes factors and marginal distributions in invariant situations. Sankhyā A 60, 307-321 (1998) · Zbl 0973.62017
[13] Box, G. E. P.: Sampling and Bayes inference in scientific modeling and robustness. J. roy. Statist. soc. Ser. A 143, 383-430 (1980) · Zbl 0471.62036
[14] Box, G. E. P.; Tiao, G. C.: A Bayesian approach to some outlier problems. Biometrika 55, 119-129 (1968) · Zbl 0159.47901
[15] Bradlow, E. T.; Zaslavsky, A.: Case influence analysis in Bayesian inference. J. comput. Graphical statist. 6, 314-331 (1997)
[16] Chaloner, K.: Residual analysis and outliers in Bayesian hierarchical models. Aspects of uncertainty (1994) · Zbl 0875.62120
[17] Chaloner, K.; Brant, R.: A Bayesian approach to outlier detection and residual analysis. Biometrika 75, 651-659 (1988) · Zbl 0659.62037
[18] Dawid, A. P.: Posterior expectations for large observations. Biometrika 60, 664-667 (1973) · Zbl 0268.62014
[19] DeFinetti, B., 1961. The Bayesian approach to the rejection of outliers. Proceedings of the Fourth Berkley Symposium on Probability and Statistics, Vol. 1. University Press, Berkley, CA, pp. 199--210.
[20] Draper, D.: Comment: utility, sensitivity analysis, and cross-validation in Bayesian model checking. Statist. sinica 6, 760-767 (1996)
[21] Evans, M.: Bayesian inference procedures derived via the concept of relative surprise. Commun. statist. Theory meth. 26, 1125-1143 (1997) · Zbl 0934.62026
[22] Freeman, P. R.: On the number of outliers in data from a linear model. Bayesian statistics, 349-365 (1980)
[23] Geisser, S.: Discussion of ’sampling and Bayes inference in scientific modelling and robustness’, by G.E.P. Box. J. roy. Statist. soc. Ser. A 143, 416-417 (1980)
[24] Geisser, S., 1985. On the prediction of observables: a selective update. In: Bernardo, J.M., DeGroot, M.H., Smith, A.F.M., Lindley, D.V. (Eds.), Bayesian Statistics, Vol. 2. North-Holland, Amsterdam, pp. 203--229. · Zbl 0671.62027
[25] Geisser, S.: Influential observations, diagnostics and discordancy tests. J. appl. Statist. 14, 133-142 (1987)
[26] Geisser, S.: Predictive discordancy testing for exponential observations. Canad. J. Statist. 17, 19-26 (1989) · Zbl 0672.62043
[27] Geisser, S.: Predictive approaches to discordancy testing. Bayesian and likelihood methods in statistics and econometrics, 321-335 (1990)
[28] Gelfand, A.E., Dey, D.K., Chang, H., 1992. Model determination using predictive distributions with implementation via sampling-based methods. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, Vol. 4. Clarendon Press, Oxford, pp. 147--167.
[29] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B.: Bayesian data analysis. (1995) · Zbl 1279.62004
[30] Gelman, A.; Meng, X. L.; Stern, H.: Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statist. sinica 6, 733-807 (1996) · Zbl 0859.62028
[31] Girón, F.J., Martı\acute{}nez, M. L., Morcillo, C., 1992. A Bayesian justification for the analysis of residuals and influence measures. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, Vol. 4. Clarendon Press, Oxford, pp. 365--388.
[32] Gómez-Villegas, M.A., Maı\acute{}n, M., 1992. The influence of prior and likelihood tail behavior on the posterior distribution. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, Vol. 4. Clarendon Press, Oxford, pp. 661--667.
[33] Good, I. J.: The appropriate mathematical tools for describing and measuring uncertainty. Uncertainty and business decisions, 19-34 (1953)
[34] Good, I. J.: The surprise index for the multivariate normal distribution. Ann. math. Statist. 27, 1130-1135 (1956) · Zbl 0073.13501
[35] Grubbs, F. E.: Procedures for detecting outlying observations in samples. Technometrics 11, 1-21 (1956)
[36] Guttman, I.: The use of the concept of a future observation in goodness of fit problems. J. roy. Statist. soc. Ser. B 29, 83-100 (1967) · Zbl 0158.37305
[37] Guttman, I.: Care and handling of univariate or multivariate outliers in detecting spuriosity: a Bayesian approach. Technometrics 15, 723-738 (1973) · Zbl 0269.62038
[38] Guttman, I.; Dutter, R.; Freeman, P. R.: Care and handling of univariate outliers in the general linear model to detect spuriosity: a Bayesian approach. Technometrics 20, 187-193 (1978) · Zbl 0408.62059
[39] Guttman, I., Peña, 1988. Outliers and influence: evaluation by posteriors of parameters in the linear model. In: Bernardo, J.M., DeGroot, M.H., Smith, A.F.M., Lindley, D.V. (Eds.), Bayesian Statistics, Vol. 3. Clarendon Press, Oxford, pp. 631--640. · Zbl 0704.62024
[40] Hoeting, J.; Raftery, A. E.; Madigan, D.: A method for simultaneous variable selection and outlier identification in linear regression. Comput. statist. Data anal. 22, 251-270 (1996) · Zbl 0900.62352
[41] Matthews, R., 1998. The great health hoax. The Sunday Telegraph, September 13 Review.
[42] Meng, X. L.: Posterior predictive p-values. Ann. statist. 22, 1142-1160 (1994) · Zbl 0820.62027
[43] O’hagan, A.: On outlier rejection phenomena in Bayes inference. J. roy. Statist. soc. Ser. B 41, 358-367 (1979) · Zbl 0422.62027
[44] O’Hagan, A., 1988. Modelling with heavy tails. In: Bernardo, J.M., DeGroot, M.H., Smith, A.F.M., Lindley, D.V. (Eds.), Bayesian Statistics, Vol. 3. Clarendon Press, Oxford, pp. 631--640.
[45] O’hagan, A.: Outliers and credence for location parameter inference. J. amer. Statist. assoc. 85, 172-176 (1990) · Zbl 0706.62030
[46] O’hagan, A.: Kendall’s advance theory of statistics, vol. 2B: Bayesian inference. (1994)
[47] O’hagan, A.: Fractional Bayes factors for model comparison. J. roy. Statist. soc. Ser. B 57, 99-138 (1995)
[48] Peña, D., Tiao, G.C., 1992. Bayesian robustness functions for linear models. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (Eds.), Bayesian Statistics, Vol. 4. Clarendon Press, Oxford, pp. 365--388.
[49] Peña, D.; Yohai: A fast procedure for outlier diagnostics in large regression problems. J. amer. Statist. assoc. 94, 434-445 (1999) · Zbl 1072.62618
[50] Pérez, J.M., Berger, J.O., 2000. Expected posterior prior distributions for model selection. ISDS Discussion paper, 00-08, Duke University.
[51] Pettit, L. I.: Bayes methods for outliers in exponential samples. J. roy. Statist. soc. Ser. B 50, 371-380 (1988)
[52] Pettit, L. I.: The conditional predictive ordinate for the normal distribution. J. roy. Statist. soc. Ser. B 52, 175-184 (1990) · Zbl 0699.62031
[53] Pettit, L. I.: Bayes factors for outlier models using the device of imaginary observations. J. amer. Statist. assoc. 87, 541-545 (1992)
[54] Pettit, L. I.; Smith, A. F. M.: Bayesian model comparison in the presence of outliers. Bull. internat. Statist. inst. 50, 292-309 (1983) · Zbl 0576.62047
[55] Pettit, L.I., Smith, A.F.M., 1985. Outliers and influential observations in linear models. In: Bernardo, J.M., DeGroot, M.H., Smith, A.F.M., Lindley, D.V. (Eds.), Bayesian Statistics, Vol. 2. North-Holland, Amsterdam, pp. 473--494. · Zbl 0671.62031
[56] Roberts, H. V.: Probabilistic prediction. J. amer. Statist. assoc. 60, 50-62 (1965) · Zbl 0134.35802
[57] Robins, J. M.; Van Der Vaart, A.; Ventura, V.: The asymptotic distribution of p-values in composite null models. J. amer. Statist. assoc. 95, 1143-1157 (2000) · Zbl 1072.62522
[58] Rubin, D. B.: Bayesian justifiable and relevant calculations for the applied statistician. Ann. statist. 12, 1151-1172 (1984) · Zbl 0555.62010
[59] Sellke, T.; Bayarri, M. J.; Berger, J. O.: Calibration of p-values for precise null hypothesis. Amer. stat. 55, 62-71 (2001) · Zbl 1182.62053
[60] Spiegelhalter, D. J.; Smith, A. F. M.: Bayes factors for linear and log-linear models with vague prior information. J. roy. Statist. soc. Ser. B 44, 377-387 (1982) · Zbl 0502.62032
[61] Verdinelli, I.; Wasserman, L.: Bayesian analysis of outlier problems using the Gibbs sampler. Statist. comput. 1, 105-117 (1991)
[62] Weaver, W.: Probability, rarity, interest and surprise. Sci. monthly 67, 390-392 (1948)
[63] Weaver, W.: Lady luck: the theory of probability. (1963)
[64] Weiss, R., 1994. Residuals and outliers in Bayesian random effects model. Discussion paper, Vol. 161, University of California at Los Angeles, Department of Biostatistics.
[65] Weiss, R.: An approach to Bayesian sensitivity analysis. J. roy. Statist. soc. Ser. B 58, 739-750 (1996) · Zbl 0860.62031
[66] West, M.: Outlier models and prior distributions in Bayesian linear regression. J. roy. Statist. soc. Ser. B 46, 431-439 (1984) · Zbl 0567.62022
[67] West, M., 1985. Generalized linear models; scale parameters, outlier accommodation and prior distributions. In: Bernardo, J.M., DeGroot, M.H., Smith, A.F.M., Lindley, D.V. (Eds.), Bayesian Statistics, Vol. 2. North-Holland, Amsterdam, pp. 531--558. · Zbl 0671.62032
[68] Zaslavsky, A., Bradlow, E.T., 1997. Posterior predictive outlier detection using sample reweighting. ASA Proceedings of the Section on Bayesian Statistical Science, pp. 66--71.
[69] Zellner, A.: Bayesian analysis of regression error terms. J. amer. Statist. assoc. 70, 138-144 (1975) · Zbl 0313.62050