zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variable selection for multivariate logistic regression models. (English) Zbl 1027.62015
Summary: We use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on the model parameters and on the model space. The propriety of the proposed informative prior is investigated in detail. Novel computational algorithms are also developed for sampling from the posterior distribution as well as for computing posterior model probabilities. Finally, a simulated data example and a real data example from a prostate cancer study are used to illustrate the proposed methodology.
62F15Bayesian inference
65C60Computational problems in statistics
62J12Generalized linear models
Full Text: DOI
[1] Bedrick, E. J.; Christensen, R.; Johnson, W.: A new perspective on priors for generalized linear models. J. amer. Statist. assoc. 91, 1450-1460 (1996) · Zbl 0882.62057
[2] Chen, M. -H.: Importance-weighted marginal Bayesian posterior density estimation. J. amer. Statist. assoc. 89, 818-824 (1994) · Zbl 0804.62040
[3] Chen, M. -H.; Dey, D. K.: Bayesian modeling of correlated binary responses via scale mixture of multivariate normal link functions. Sankhyā, ser. A 60, 322-343 (1998) · Zbl 0976.62019
[4] Chen, M. -H.; Ibrahim, J. G.; Yiannoutsos, C.: Prior elicitation, variable selection, and Bayesian computation for logistic regression models. J. roy. Statist. soc. Ser. B 61, 223-242 (1999) · Zbl 0913.62026
[5] Chen, M. -H.; Shao, Q. -M.: Performance study of marginal posterior density estimation via Kullback--Leibler divergence. Test, J. Spanish soc. Statist. oper. Res. 6, 321-350 (1997) · Zbl 0905.62021
[6] Chib, S.; Greenberg, E.: Bayesian analysis of multivariate probit models. Biometrika 85, 347-361 (1998) · Zbl 0938.62020
[7] Desjardin, A.M., 1997. Statistical inference on studies of Adenocarcinoma of the prostate, M.S. Thesis, Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, unpublished.
[8] Gelfand, A. E.; Smith, A. F. M.: Sampling based approaches to calculating marginal densities. J. amer. Statist. assoc. 85, 398-409 (1990) · Zbl 0702.62020
[9] Gelfand, A. E.; Smith, A. F. M.; Lee, T. M.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. amer. Statist. assoc. 87, 523-532 (1992)
[10] Geman, S.; Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE trans. Pattern anal. Mach intell. 6, 721-741 (1984) · Zbl 0573.62030
[11] George, E. I.; Mcculloch, R. E.: Variable selection via Gibbs sampling. J. amer. Statist. assoc. 88, 881-889 (1993)
[12] Geweke, J., 1991. Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints, Computing Science and Statistics: Proceedings of the Twenty-Third Symposium on the Interface, pp. 571--578.
[13] Gilks, W. R.; Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. statist. 41, 337-348 (1992) · Zbl 0825.62407
[14] Ibrahim, J. G.; Laud, P. W.: A predictive approach to the analysis of designed experiments. J. amer. Statist. assoc. 89, 309-319 (1994) · Zbl 0791.62080
[15] Ibrahim, J. G.; Ryan, L. M.; Chen, M. -H.: Use of historical controls to adjust for covariates in trend tests for binary data. J. amer. Statist. assoc. 93, 1282-1293 (1998)
[16] Kuo, L.; Mallick, B. K.: Variable selection for regression models. Sankhyā, ser. B 60, 65-81 (1998) · Zbl 0972.62016
[17] Laud, P. W.; Ibrahim, J. G.: Predictive model selection. J. roy. Statist. soc. Ser. B 57, 247-262 (1995) · Zbl 0809.62024
[18] Liang, K. -Y.; Zeger, S. L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22 (1986) · Zbl 0595.62110
[19] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.: Equations of state calculations by fast computing machines. J. chem. Phys. 21, 1087-1092 (1953)
[20] Mitchell, T. J.; Beauchamp, J. J.: Bayesian variable selection in linear regression (with discussion). J. amer. Statist. assoc. 83, 1023-1036 (1988) · Zbl 0673.62051
[21] Prentice, R. L.: Correlated binary regression with covariate specific to each binary observation. Biometrics 44, 1033-1048 (1988) · Zbl 0715.62145
[22] Rousseeuw, P.; Molenberghs, G.: The shape of correlation matrices. Amer. statist. 48, 276-279 (1994)
[23] Schwarz, G.: Estimating the dimension of a model. Ann. statist. 6, 461-464 (1978) · Zbl 0379.62005
[24] Verdinelli, I.; Wasserman, L.: Computing Bayes factors using a generalization of the savage-Dickey density ratio. J. amer. Statist. assoc. 90, 614-618 (1995) · Zbl 0826.62022
[25] Zeger, S. L.; Liang, K. -Y.: Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121-130 (1986)