zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Trigonometrically fitted predictor--corrector methods for IVPs with oscillating solutions. (English) Zbl 1027.65095
Summary: We develop a trigonometrically fitted predictor-corrector (P-C) scheme, which is based on the well-known two-step second-order Adams-Bashforth method (as predictor) and on the third-order Adams-Moulton method (as corrector). Numerical experiments show that the new trigonometrically fitted P-C method is substantially more efficient than widely used methods for the numerical solution of initial-value problems (IVPs) with oscillating solutions.

65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
Full Text: DOI
[1] Dormand, J. R.; Prince, P. J.: A family of embedded Runge--Kutta formulae. J. comput. Appl. math. 6, 19-26 (1980) · Zbl 0448.65045
[2] Hairer, E.; Norset, S. P.; Wanner, G.: Solving ordinary differential equations I, nonstiff problems. (1993) · Zbl 0789.65048
[3] Ixaru, L. Gr.: Numerical methods for differential equations and applications. (1984) · Zbl 0543.65047
[4] Konguetsof, A.; Simos, T. E.: On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. comput. Methods sci. Eng. 1, 143-165 (2001) · Zbl 1012.65075
[5] Lambert, J. D.: Numerical methods for ordinary differential systems. (1991) · Zbl 0745.65049
[6] Landau, L. D.; Lifshitz, F. M.: Quantum mechanics. (1965) · Zbl 0178.57901
[7] Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. math. 10, 65-75 (1972) · Zbl 0221.65123
[8] I. Prigogine, S. Rice (Eds.), Advances in Chemical Physics, Vol. 93: New Methods in Computational Quantum Mechanics, Wiley, New York, 1997.
[9] G. Psihoyios, T.E. Simos, Exponentially and trigonometrically-fitted explicit advanced step-point (EAS) methods for IVPs with oscillating solution, Internat. J. Mod. Phys. C (2003), to appear. · Zbl 1079.34549
[10] Quinlan, G. D.; Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694-1700 (1990)
[11] Raptis, A. D.; Allison, A. C.: Exponential--Fitting methods for the numerical solution of the Schrödinger equation. Comput. phys. Commun. 14, 1-5 (1978)
[12] L.F. Shampine, M.K. Gordon, Computer Solutions of Ordinary Differential Equations: The Initial Value Problem, W.H. Freeman, San Francisco, 1975. · Zbl 0347.65001
[13] T.E. Simos, Numerical solution of ordinary differential equations with periodical solution, Doctoral Dissertation, National Technical University of Athens, Greece, 1990 (in Greek).
[14] T.E. Simos, in: A. Hinchliffe (Ed.), Atomic Structure Computations in Chemical Modelling: Applications and Theory, UMIST, The Royal Society of Chemistry, London, 2000, 38--142.
[15] Simos, T. E.; Vigo-Aguiar, J.: On the construction of efficient methods for second order ivps with oscillating solution. Internat. J. Mod. phys. C 10, 1453-1476 (2001)
[16] Simos, T. E.; Williams, P. S.: On finite difference methods for the solution of the Schrödinger equation. Comput. chem. 23, 513-554 (1999) · Zbl 0940.65082
[17] Stiefel, E.; Bettis, D. G.: Stabilization of cowell’s method. Numer. math. 13, 154-175 (1969) · Zbl 0219.65062
[18] Van Daele, M.; Berghe, G. Vanden; De Meyer, H.: Properties and implementation of r-Adams methods based on mixed-type interpolation. Comput. math. Appl. 30, 37-54 (1995) · Zbl 0837.65079
[19] J. Vigo-Aguiar, Mathematical methods for the numerical propagation of satellite orbits, Doctoral Dissertation, University of Valladolid, Spain, 1993 (in Spanish).
[20] Vigo-Aguiar, J.; Ferrandiz, J. M.: A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. anal. 35, 1684-1708 (1998) · Zbl 0916.65081