Lindström, Ulf; Roček, Martin; van Nieuwenhuizen, Peter Consistent boundary conditions for open strings. (English) Zbl 1027.83027 Nucl. Phys., B 662, No. 1-2, 147-169 (2003). Summary: We study boundary conditions for the bosonic, spinning (NSR) and Green-Schwarz open string, as well as for (1+1)-dimensional supergravity. We consider boundary conditions that arise from (1) extremizing the action, (2) BRST, rigid or local supersymmetry, or \(\kappa\)(Siegel)-symmetry of the action, (3) closure of the set of boundary conditions under the symmetry transformations, and (4) the boundary limits of bulk Euler-Lagrange equations that are “conjugate” to other boundary conditions. We find corrections to Neumann boundary conditions in the presence of a bulk tachyon field. We discuss a boundary superspace formalism. We also find that path integral quantization of the open string requires an infinite tower of boundary conditions that can be interpreted as a smoothness condition on the doubled interval; we interpret this to mean that for a path-integral formulation of open strings with only Neuman boundary conditions, the description in terms of orientifolds is not just natural, but is actually fundamental. Cited in 10 Documents MSC: 83E30 String and superstring theories in gravitational theory 83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory 83E50 Supergravity 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems) Keywords:Green-Schwarz open string; (1+1)-dimensional supergravity; path integral quantization; bulk Euler-Lagrange equations; Neuman boundary conditions × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] van Nieuwenhuizen, P., The BRST formalism for the open spinning string, (Martinis, M.; Andrić, I., Superstrings, Anomalies and Unification. Superstrings, Anomalies and Unification, Proceedings, 5th Adriatic Meeting on Particle Physics, Dubrovnik, Yugoslavia, 16-28 June 1986 (1987), World Scientific: World Scientific Singapore) [2] Haggi-Mani, P.; Lindström, U.; Zabzine, M., Boundary conditions, supersymmetry and \(A\)-field coupling for an open string in a \(B\)-field background, Phys. Lett. B, 483, 443 (2000) · Zbl 1031.81610 [3] Albertsson, C.; Lindström, U.; Zabzine, M., \(N=1\) supersymmetric sigma model with boundaries. I, Commun. Math. Phys., in press · Zbl 1028.81044 [4] Albertsson, C.; Lindström, U.; Zabzine, M., \(N=1\) supersymmetric sigma model with boundaries. II · Zbl 1097.81548 [5] Lindström, U.; Zabzine, M., \(N=2\) boundary conditions for non-linear sigma models and Landau-Ginzburg models [6] Hori, K.; Iqbal, A.; Vafa, C., D-branes and mirror symmetry [7] Warner, N. P., Supersymmetry in boundary integrable models, Nucl. Phys. B, 450, 663 (1995) · Zbl 0925.81346 [8] Kokado, A.; Konisi, G.; Saito, T., NS open strings with \(B\) field and closed string tachyon vertex [9] Nakamura, S., Closed string tachyon condensation and on-shell effective action of open-string tachyons · Zbl 1055.81611 [10] Chalmers, G., Open string decoupling and tachyon condensation, JHEP, 0106, 012 (2001) [11] Husain, T. Z.; Zabzine, M., Bosonic open strings in a tachyonic background field [12] Sagnotti, A., Open strings and their symmetry groups · Zbl 1302.81147 [13] Pradisi, G.; Sagnotti, A., Open string orbifolds, Phys. Lett. B, 216, 59 (1989) [14] Angelantonj, C.; Sagnotti, A., Open strings, Phys. Rep., 371, 1 (2002) · Zbl 0999.83056 [15] Gibbons, G. W., Cosmological evolution of the rolling tachyon, Phys. Lett. B, 537, 1 (2002) · Zbl 0995.83084 [16] Chu, C. S.; Howe, P. S.; Sezgin, E., Strings and D-branes with boundaries, Phys. Lett. B, 428, 59 (1998) · Zbl 1355.81121 [17] Berkovits, N.; Pershin, V., Supersymmetric Born-Infeld from the pure spinor formalism of the open superstring · Zbl 1226.81160 [18] Grassi, P. A.; Policastro, G.; Porrati, M.; van Nieuwenhuizen, P., Covariant quantization of superstrings without pure spinor constraints, JHEP, 0210, 054 (2002) [19] Shifman, M. A.; Vainshtein, A. I.; Voloshin, M. B., Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry, Phys. Rev. D, 59, 045016 (1999) [20] Nastase, H.; Stephanov, M. A.; van Nieuwenhuizen, P.; Rebhan, A., Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons, Nucl. Phys. B, 542, 471 (1999) · Zbl 0942.81042 [21] Goldhaber, A. S.; Litvintsev, A.; van Nieuwenhuizen, P., Local Casimir energy for solitons [22] Bordag, M.; Goldhaber, A. S.; van Nieuwenhuizen, P.; Vassilevich, D., Heat kernels and zeta-function regularization for the mass of the SUSY kink, Phys. Rev. D, in press [23] Hori, K., Linear models of supersymmetric D-branes · Zbl 1022.81045 [24] Rothstein, M., Integration on noncompact supermanifolds, Trans. Am. Math. Soc., 299, 387 (1987) · Zbl 0611.58014 [25] Vassilevich, D. V., QED on curved background and on manifolds with boundaries: unitarity vs. covariance, Phys. Rev. D, 52, 999 (1995) [26] Vassilevich, D. V., The Faddeev-Popov trick in the presence of boundaries, Phys. Lett. B, 421, 93 (1998) [27] M. Roček, P. van Nieuwenhuizen, An introduction to modern string theory, in preparation; M. Roček, P. van Nieuwenhuizen, An introduction to modern string theory, in preparation [28] Friedan, D.; Martinec, E. J.; Shenker, S. H., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B, 271, 93 (1986) [29] Siegel, W., Hidden local supersymmetry in the supersymmetric particle action, Phys. Lett. B, 128, 397 (1983) [30] Siegel, W., Light cone analysis of covariant superstring, Nucl. Phys. B, 236, 311 (1984) [31] Green, M. B.; Schwarz, J. H., Covariant description of superstrings, Phys. Lett. B, 136, 367 (1984) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.