zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex scale-free networks. (English) Zbl 1027.90501
Summary: Systems as diverse as the world wide web or the cell are described by networks with complex topology. Traditionally it has been assumed that these networks are random. However, recent studies indicate that such complex systems emerge as a result of self-organizing processes governed by simple but generic laws, resulting in topologies strikingly different from those predicted by random networks. Such studies also lead to a paradigm shift regarding our approach to complex networks, allowing us to view them as dynamical systems rather than static graphs. In this paper, we briefly review the network models and discuss recent empirical results on network topology and the implications of these findings, including Internet and biological application.

82B41Random walks, random surfaces, lattice animals, etc. (statistical mechanics)
82B44Disordered systems (equilibrium statistical mechanics)
Full Text: DOI
[1] Erdo?s, P.; Rényi, A.: Publ. math. Inst. hung. Acad. sci.. 5, 17 (1960)
[2] Bollobás, B.: Random graphs. (1985) · Zbl 0567.05042
[3] Stauffer, D.; Aharony, A.: Percolation theory. (1992) · Zbl 0862.60092
[4] Watts, D. J.; Strogatz, S. H.: Nature. 393, 440 (1998)
[5] Barabási, A. -L.; Albert, R.: Science. 286, 509 (1999)
[6] Barthélémy, M.; Amaral, L. A. N.: Phys. rev. Lett.. 82, 3180 (1999)
[7] Collins, J.; Chow, C.: Nature. 393, 6684 (1998)
[8] Lawrence, S.; Giles, C. L.: Nature. 400, 107 (1999)
[9] Albert, R.; Jeong, H.; Barabási, A. -L.: Nature. 400, 130 (1999)
[10] Barabási, A. -L.; Albert, R.; Jeong, H.: Physica A. 272, 173 (1999)
[11] J. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Proceedings of the International Conference on Combinatorics and Computing, 1999.
[12] Adamic, L. A.: Proc. lecture notes in comput. Sci.. 1696, 443 (1999)
[13] Huberman, B. A.; Adamic, L. A.: Nature. 400, 131 (1999)
[14] M. Faloutsos, P. Faloutsos, C. Faloutos, SIGCOMM’99 Proceedings, Boston, 1999.
[15] Redner, S.: European phys. J. B. 4, 131 (1998)
[16] Albert, R.; Barabási, A. -L.: Phys. rev. Lett.. 85, 5234 (2000)
[17] Amaral, L. A.; Scala, A.; Barthélémy, M.; Stanley, H. E.: Proc. nat. Acad. sci. USA. 97, 11149 (2000)
[18] K.-I. Goh, B. Kahng, D. Kim, Universal behavior of the load distribution in scale-free networks, PNAS 99 (2002) 12583. · Zbl 1030.68005
[19] Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabasi, A. -L.: Nature. 407, 651 (2000)
[20] H. Jeong, B. Tombor, Z.N. Oltvai, A.-L. Barabasi, Computation of biochemical pathways and genetic networks workshop Proceeding, Heidelberg, 2001.
[21] Strogatz, S. H.: Nature. 410, 268 (2001)
[22] Cascante, M.; Melendez-Hevia, E.; Kholodenko, B.; Sicilia, J.; Kacser, H.: Biochem. J.. 308, 895 (1995)
[23] Hartwell, L. H.; Hopfield, J. J.; Leibler, S.; Murray, A. W.: Nature. 402, C47 (1999)
[24] Eisenberg, D.; Marcotte, E. M.; Xenarios, I.; Yeates, T. O.: Nature. 405, 823 (2000)
[25] Uetz, P.: Nature. 403, 623 (2000)
[26] Rain, J. -C.: Nature. 409, 211 (2001)
[27] Xenarios, I.; Rice, D. W.; Salwinski, L.; Baron, M. K.; Marcotte, E. M.; Eisenberg, D.: Nucleic acids res.. 28, 289 (2000)
[28] Jeong, H.; Mason, S. P.; Barabasi, A. -L.; Oltvai, Z. N.: Nature. 411, 41 (2001)
[29] S.-H. Yook, H. Jeong, A.-L. Barabasi, Modeling the Internet’s large-scale topology, PNAS 99 (2002) 13382.
[30] H. Jeong, Z.N. Oltvai, A.-L. Barabasi, Prediction of protein essentiality based on genomic data, ComPlexUs, in press (2003).