zbMATH — the first resource for mathematics

On Lucas pseudoprimes of the form \(ax^2+bxy+cy^2\) in arithmetic progression \(AX+B\) with a prescribed value of the Jacobi symbol. (English) Zbl 1028.11008
Let \(F\) be a binary indefinite integral quadratic form and assume it has odd fundamental discriminant \(d\) and belongs to the principal genus. Consider the sequence of Lucas numbers with parameters \(P\) and \(Q\) and \(D= P^2-4Q\). Then, under some natural conditions on \(P,Q,D,A,B\), if the arithmetic progression \(AX+B\) represents at all an odd integer \(n_0\) with the Jacobi symbol \((D/n_0)=\varepsilon\), where \(\varepsilon = \pm 1\) is fixed, then the progression represents infinitely many Lucas pseudoprimes \(n\) with parameters \(P,Q\), represented by the quadratic form \(F\) and satisfying \((D/n)=\varepsilon\).
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11A15 Power residues, reciprocity
Full Text: EuDML
[1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie. Tenbner, Leipzig, 1894. · JFM 55.0685.02
[2] Baillie R., Wagstaff, Jr. S.: Lucas pseudoprimes. Math. Comp. 35 (1980), 1391-1417. · Zbl 0458.10003 · doi:10.2307/2006406
[3] Bilu Yu., Hanrot G., Vouter P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. · Zbl 0995.11010 · doi:10.1515/crll.2001.080
[4] Crandall R., Pomerance C.: Prince Numbers. A Computational Perspective, Springer-Verlag, New York, 2001.
[5] Dickson L. E.: History of the Theory of Numbers, Vol. I. Chelsea Publishing Company, New York, 1952.
[6] Durst L. K.: Exceptional real Lehmer sequences. Pacific J. Math. 9 (1959), 437-441. · Zbl 0091.04204 · doi:10.2140/pjm.1959.9.437
[7] Erdös P., Kiss P., Sárközy A.: Lower bound for the counting function. Math. Comp. 51 (1988), 315-323. · Zbl 0658.10003
[8] Lehmer D. H.: An extended theory of Lucas functions. Ann. of Math. (2) 31 (1930), 419-448. · JFM 56.0874.04 · doi:10.2307/1968235
[9] Meyer A.: Ueber einen Satz von Dinchlet. J. reine angew. Math. 103 (1888), 98-117. · JFM 20.0192.02
[10] Narkiewicz W.: The Development of Prime Number Theory: from Euclid to Hardy and Littlewood. Springer, 2000. · Zbl 0942.11002
[11] Rotkiewicz A.: On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. · Zbl 0249.10012
[12] Rotkiewicz A.: On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression. Math. Comp. 39 (1982), 239-247. · Zbl 0492.10002 · doi:10.2307/2007635
[13] Rotkoewicz A.: On strong pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arith. 68 (1994), 145-151. · Zbl 0822.11016
[14] Rotkiewicz A.: On Lucas pseudoprimes of the form \(ax^ 2+bxy+cy^ 2\). Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. · Zbl 0852.11006
[15] Rotkiewicz A., A. Schinzel: Sur les nombres pseudopremiers de la forme \(ax^ 2+bxy+cy^ 2\). C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. · Zbl 0117.28203
[16] Rotkiewicz A., Schinzel A.: On Lucas pseudoprimes with a prescribed value of the Jacobi symbol. Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. · Zbl 0951.11002
[17] Schinzel A.: On primitive prime factors of \(a^n - b^n\). Proc. Cambridge Philos. Soc. 58 (1962), 555-562. · Zbl 0114.02605
[18] Schnitzel A.: The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Math. 4 (1962), 413-416. · Zbl 0106.03105 · doi:10.1007/BF02591623
[19] Stewart C. L.: Primitive divisors of Lucas and Lehmer sequences. Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, Academic Press, New York, 1997, pp. 79-92.
[20] Ward M.: The intrinsic divisor of Lehmer numbers. Ann. of Math. (2) 62 (1955), 230-236. · Zbl 0065.27102 · doi:10.2307/1969677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.