×

zbMATH — the first resource for mathematics

Deriving calculus with cotriples. (English) Zbl 1028.18004
For a functor of spaces and a space satisfying certain connectivity conditions, T. Goodwillie [“Calculus III: The Taylor series of a homotopy functor”, in preparation] has obtained a tower of functors and natural transformations that acts like a Taylor series for the functor expanded about the space. This construction is an important tool in homotopy theory and algebraic homotopy, and is related to A. Dold and D. Puppe’s stable derived functions [Ann. Inst. Fourier 11, 201-312 (1961; Zbl 0098.36005)] and S. Eilenberg and S. MacLane’s Q-constructions [Trans. Am. Math. Soc. 71, 294-330 (1951; Zbl 0043.25403), Ann. Math., II. Ser. 60, 49-139 (1954; Zbl 0055.41704)].
In this paper the authors construct a Taylor tower for functors from basepointed to abelian categories, by using cotriples associated to cross effect functors. They also study the layers \(D_nF=\text{fiber}(P_nF\to P_{n-1}F)\), obtaining a result analogous to a result of Goodwillie for the layers in the Taylor tower of a functor of spaces. Then they study the limit of the tower, determining a connectivity condition on the cross effects of \(F\) that guarantees convergence. They define the notion of differential for a functor and prove chain and product rules for them. Finally the authors determine the functors that play the role of exponential functors, and compute a version of the Taylor tower for them.
Although this paper was inspired by the works of Goodwillie, Dold-Puppe and MacLane, it is self contained, and requires only some basic homological algebra and category theory.

MSC:
18G30 Simplicial sets; simplicial objects in a category (MSC2010)
55P65 Homotopy functors in algebraic topology
55U15 Chain complexes in algebraic topology
18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
19D10 Algebraic \(K\)-theory of spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Greg Arone, The Mitchell-Richter filtration of loops on Stiefel manifolds stably splits, Proc. Amer. Math. Soc. 129 (2001), no. 4, 1207 – 1211. · Zbl 0978.55007
[2] Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743 – 788. · Zbl 0997.55016 · doi:10.1007/s002220050300 · doi.org
[3] Stanisław Betley, Stable derived functors, the Steenrod algebra and homological algebra in the category of functors, Fund. Math. 168 (2001), no. 3, 279 – 293. · Zbl 0986.55008 · doi:10.4064/fm168-3-4 · doi.org
[4] A. K. Bousfield, Homogeneous functors and their derived functors, unpublished manuscript.
[5] Maria Basterra and Randy McCarthy, \Gamma -homology, topological André-Quillen homology and stabilization, Topology Appl. 121 (2002), no. 3, 551 – 566. · Zbl 1004.55003 · doi:10.1016/S0166-8641(01)00098-0 · doi.org
[6] G. E. Carlsson, R. L. Cohen, T. Goodwillie, and W. C. Hsiang, The free loop space and the algebraic \?-theory of spaces, \?-Theory 1 (1987), no. 1, 53 – 82. · Zbl 0649.55001 · doi:10.1007/BF00533987 · doi.org
[7] Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201 – 312 (German, with French summary). · Zbl 0098.36005
[8] S. Eilenberg and S. Mac Lane, Homology theories for multiplicative systems, Trans. Amer. Math. Soc. 71 (1951), 294-330. · Zbl 0043.25403
[9] S. Eilenberg and S. Mac Lane, On the groups \(H(\pi , n)\), II, Ann. of Math. 60 (1954), 49-139.
[10] A. D. Elmendorf, I. Kriz, M. A. Mandell, and S. P. May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monographs, Vol. 47, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0894.55001
[11] Thomas G. Goodwillie, Calculus. I. The first derivative of pseudoisotopy theory, \?-Theory 4 (1990), no. 1, 1 – 27. · Zbl 0741.57021 · doi:10.1007/BF00534191 · doi.org
[12] Thomas G. Goodwillie, Calculus. II. Analytic functors, \?-Theory 5 (1991/92), no. 4, 295 – 332. · Zbl 0776.55008 · doi:10.1007/BF00535644 · doi.org
[13] T. Goodwillie, Calculus III: The Taylor series of a homotopy functor, in preparation. · Zbl 1067.55006
[14] Mamuka Jibladze and Teimuraz Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), no. 2, 253 – 296. · Zbl 0724.18005 · doi:10.1016/0021-8693(91)90093-N · doi.org
[15] Brenda Johnson and Randy McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane’s \?-construction, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1555 – 1593. · Zbl 0897.18005
[16] Brenda Johnson and Randy McCarthy, Taylor towers for functors of additive categories, J. Pure Appl. Algebra 137 (1999), no. 3, 253 – 284. · Zbl 0929.18007 · doi:10.1016/S0022-4049(97)00203-X · doi.org
[17] B. Johnson and R. McCarthy, A classification of degree n functors, to appear in Cahiers Topologie Géom. Différentielle Catég. · Zbl 1025.18009
[18] R. Kantorovitz and R. McCarthy, The Taylor towers for rational algebraic \(K\)-theory and Hochschild homology, Homology Homotopy Appl. 4 (2002), no. 1, 191-212. · Zbl 1386.19007
[19] Igor Kříž and J. P. May, Operads, algebras, modules and motives, Astérisque 233 (1995), iv+145pp (English, with English and French summaries). · Zbl 0840.18001
[20] A. Mauer-Oats, Algebraic Goodwillie calculus and a cotriple model for the remainder, preprint. · Zbl 1092.55008
[21] Randy McCarthy, Relative algebraic \?-theory and topological cyclic homology, Acta Math. 179 (1997), no. 2, 197 – 222. · Zbl 0913.19001 · doi:10.1007/BF02392743 · doi.org
[22] Randy McCarthy, Dual calculus for functors to spectra, Homotopy methods in algebraic topology (Boulder, CO, 1999) Contemp. Math., vol. 271, Amer. Math. Soc., Providence, RI, 2001, pp. 183 – 215. · Zbl 0996.19005 · doi:10.1090/conm/271/04357 · doi.org
[23] V. Minasian, André-Quillen spectral sequence for THH, Topology Appl. 129 (2003), no. 3, 273-280. · Zbl 1061.55008
[24] T. I. Pirashvili, Higher additivizations, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 44 – 54 (Russian, with English summary). · Zbl 0705.18008
[25] Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. · Zbl 0168.20903
[26] Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65 – 87.
[27] Birgit Richter, An Atiyah-Hirzebruch spectral sequence for topological André-Quillen homology, J. Pure Appl. Algebra 171 (2002), no. 1, 59 – 66. · Zbl 1070.55003 · doi:10.1016/S0022-4049(01)00117-7 · doi.org
[28] Daniel Simson, Stable derived functors of the second symmetric power functor, second exterior power functor and Whitehead gamma functor, Colloq. Math. 32 (1974), 49 – 55. · Zbl 0293.18017
[29] Daniel Simson and Andrzej Tyc, Connected sequences of stable derived functors and their applications, Dissertationes Math. (Rozprawy Mat.) 111 (1974), 67. · Zbl 0279.18010
[30] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. · Zbl 0797.18001
[31] Michael Weiss, Orthogonal calculus, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3743 – 3796. · Zbl 0866.55020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.