zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamical behavior of an epidemic model with a nonlinear incidence rate. (English) Zbl 1028.34046
Here, an SIRS model of disease spread with nonlinear incidence rate is studied, assuming that the total population is constant ($S+I+R=N_0>0$). The rescaled system $${{dI}\over{dt}} = {{I^2}\over{1 + p I^2}} (A-I-R) - mI,\quad {{dR}\over{dt}} = q I - R,$$ is analyzed by means of qualitative analysis. The authors provide conditions under which the disease can persist (with one or two positive equilibria apart from the origin) or vanishes. Moreover, they give conditions for stability of the equilibria and existence and stability of periodic orbits. They show that for some parameters at least two periodic orbits appear, and examine cases under which the system undergoes Bogdanov-Takens bifurcation, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation.

MSC:
34C60Qualitative investigation and simulation of models (ODE)
92D30Epidemiology
34D05Asymptotic stability of ODE
34C23Bifurcation (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Bogdanov, R.: Bifurcations of a limit cycle for a family of vector fields on the plan. Selecta math. Soviet. 1, 373-388 (1981) · Zbl 0518.58029
[2] Bogdanov, R.: Versal deformations of a singular point on the plan in the case of zero eigen-values. Selecta math. Soviet. 1, 389-421 (1981)
[3] Busenberg, S.; Cooke, K. L.: The population dynamics of two vertically transmitted infections. Theoret. popul. Biol. 33, 181-198 (1988) · Zbl 0638.92009
[4] Capasso, V.; Serio, G.: A generalization of the kermack--mckendrick deterministic epidemic model. Math. biosci. 42, 43-61 (1978) · Zbl 0398.92026
[5] Capasso, V.; Wilson, R. E.: Analysis of a reaction--diffusion system modeling man--environment--man epidemics. SIAM J. Appl. math. 57, 327-346 (1997) · Zbl 0872.35053
[6] Chow, S. N.; Hale, J. K.: Methods of bifurcation. (1982) · Zbl 0487.47039
[7] Derrick, W. R.; Den Driessche, P. Van: A disease transmission model in a nonconstant population. J. math. Biol. 31, 495-512 (1993) · Zbl 0772.92015
[8] Dushoff, J.; Huang, W.; Castillo-Chavez, C.: Backwards bifurcations and catastrophe in simple models of fatal diseases. J. math. Biol. 36, 227-248 (1998) · Zbl 0917.92022
[9] Guckenheimer, J.; Holmes, P. J.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1996) · Zbl 0515.34001
[10] Hadeler, K.; Den Driessche, P. Van: Backward bifurcation in epidemic control. Math. biosci. 146, 15-35 (1997) · Zbl 0904.92031
[11] Hethcote, H. W.: The mathematics of infectious disease. SIAM rev. 42, 599-653 (2000) · Zbl 0993.92033
[12] Hethcote, H. W.; Lewis, M. A.; Den Driessche, P. Van: Stability analysis for models of diseases without immunity. J. math. Biol. 13, 185-198 (1981) · Zbl 0475.92014
[13] Hethcote, H. W.; Lewis, M. A.; Den Driessche, P. Van: An epidemiological model with a delay and a nonlinear incidence rate. J. math. Biol. 27, 49-64 (1989) · Zbl 0714.92021
[14] Hethcote, H. W.; Den Driessche, P. Van: Some epidemiological models with nonlinear incidence. J. math. Biol. 29, 271-287 (1991) · Zbl 0722.92015
[15] Kuznetsov, Y. A.: Elements of applied bifurcation theory. (1998) · Zbl 0914.58025
[16] Liu, W. M.; Hethcote, H. W.; Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. math. Biol. 25, 359-380 (1987) · Zbl 0621.92014
[17] Liu, W. M.; Levin, S. A.; Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. math. Biol. 23, 187-204 (1986) · Zbl 0582.92023
[18] Lizana, M.; Rivero, J.: Multiparametric bifurcations for a model in epidemiology. J. math. Biol. 35, 21-36 (1996) · Zbl 0868.92024
[19] Perko, L.: Differential equations and dynamical systems. (1996) · Zbl 0854.34001
[20] Ruan, S.; Xiao, D.: Global analysis in a predator--prey system with nonmonotonic functional response. SIAM J. Math. appl. 61, 1445-1472 (2001) · Zbl 0986.34045
[21] F. Takens, Forced oscillations and bifurcation, in: Applications of Global Analysis I, Comm. Math. Inst. Rijksuniversitat Utrecht, Vol. 3, 1974, pp. 1--59.
[22] Den Driessche, P. Van; Watmough, J.: A simple SIS epidemic model with a backward bifurcation. J. math. Biol. 40, 525-540 (2000) · Zbl 0961.92029
[23] Wu, L.; Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. differential equations 168, 150-167 (2000) · Zbl 0969.34042
[24] Y.Q. Ye et al., Theory of Limit Cycles, Transactions of Mathematical Monographs, Vol. 66, American Mathematical Society, Providence, RI, 1986.