zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. (English) Zbl 1028.46041
A measurable function $u:\Omega\to \bbfR$ belongs to $L^{p(x)} (\Omega)$, by definition, if $\lim_{\lambda \downarrow 0}\int_\Omega |\lambda u(x)|^{p(x)} dx=0$. The authors study the properties of the space $L^{p(x)} (\Omega)$, equipped with some kind of Luxemburg norm. They also consider a parallel construction for the Sobolev space $W^{m,p(x)} (\Omega)$. Such constructions are motivated by certain elliptic or variational problems.

MSC:
46E30Spaces of measurable functions
46E35Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
WorldCat.org
Full Text: DOI
References:
[1] Adam, R. A.: Sobolev spaces. (1983) · Zbl 0546.28008
[2] Fan, X. L.: Regularity of integrands $f(x,{\xi})=|{\xi}|ga(x)$ with piecewise constant exponents ${\alpha}$(x). J. gansu sci. 1, 1-3 (1996) · Zbl 0874.49031
[3] Fan, X. L.: The regularity of Lagrangians $f(x,{\xi})=|{\xi}|{\alpha}(x)$ with hölder exponents ${\alpha}$(x). Acta math. Sinica (N.S.) 12, 254-261 (1996) · Zbl 0874.49031
[4] Fan, X. L.: Regularity of nonstandard Lagrangians $f(x,{\xi})$. Nonlinear anal. 27, 669-678 (1996) · Zbl 0874.49032
[5] Fan, X. L.: Regularity of Lagrangians with ${\alpha}(x)$-growth conditions. J. Lanzhou univ. 33, 1-7 (1997) · Zbl 0907.49020
[6] Fan, X. L.; Zhao, D.: Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions. Ann. math. Sinica 17A, 557-564 (1996) · Zbl 0933.49024
[7] Fan, X. L.; Zhao, D.: A class of de giorgi type and hölder continuity. Nonlinear anal. 36, 295-318 (1999) · Zbl 0927.46022
[8] Fan, X. L.; Zhao, D.: The quasi-minimizer of integral functionals with $m(x)$ growth conditions. Nonlinear anal. 39, 807-816 (2000) · Zbl 0943.49029
[9] Hudzik, H.: A generalization of Sobolev space (I). Funct. approx. 2, 67-73 (1976) · Zbl 0338.46032
[10] Hudzik, H.: A generalization of Sobolev space (II). Funct. approx. 3, 77-85 (1976) · Zbl 0355.46011
[11] Hudzik, H.: On generalized Orlicz--Sobolev space. Funct. approx. 4, 37-51 (1977) · Zbl 0355.46012
[12] Hudzik, H.: On density of c\infty({$\Omega$}) in Orlicz--Sobolev space wkm({$\Omega$}) for every open set ${\Omega}$\subsetRn. Funct. approx. 5, 113-128 (1977) · Zbl 0348.46026
[13] Hudzik, H.: On problem of density of c\infty0({$\Omega$}) in generalized Orlicz--Sobolev space wkm({$\Omega$}) for every open set ${\Omega}$\subsetRn. Comment. math. 20, 65-78 (1977) · Zbl 0385.46016
[14] Hudzik, H.: On continuity of the imbedding operation from wkm1({$\Omega$}) into wkm2({$\Omega$}). Funct. approx. 6, 111-118 (1978) · Zbl 0385.46015
[15] Hudzik, H.: On imbedding theorems of Orlicz--Sobolev space wkm({$\Omega$}) into cm({$\Omega$}) for open, bounded, and starlike ${\Omega}$\subsetRn. Comment. math. 20, 341-363 (1978) · Zbl 0394.46030
[16] Hudzik, H.: Density of C$infty0(Rn)$ in generalized Orlicz--Sobolev space $WkM(Rn)$. Funct. approx. 7, 15-21 (1979)$
[17] Hudzik, H.: The problems of separability, duality, reflexivity and of comparison for generalized Orlicz--Sobolev space wkm({$\Omega$}). Comment. math. 21, 315-324 (1979) · Zbl 0429.46017
[18] Musielak, J.: Orlicz spaces and modular spaces. Lecture notes in mathematics 1034 (1983) · Zbl 0557.46020
[19] Vainberg, M. M.: Variational methods for the study of nonlinear operators. (1964)
[20] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 29, 33-36 (1987) · Zbl 0599.49031