×

Structure function for aliasing patterns in \(2^{l-n}\) design with multiple groups of factors. (English) Zbl 1028.62062

Summary: A general approach to studying fractional factorial designs with multiple groups of factors is proposed. A structure function is generated by the defining contrasts among different groups of factors and the remaining columns. The structure function satisfies a first-order partial differential equation. By solving this equation, general results about the structures and properties of the designs are obtained. As an important application, practical rules for the selection of “optimal” single arrays for robust parameter design experiments are derived.

MSC:

62K15 Factorial statistical designs
62K05 Optimal statistical designs
Full Text: DOI

References:

[1] BAILEY, R. A. (1982). Dual Abelian groups in the design of experiments. In Algebraic Structures and Applications (P. Shultz, C. Praeger and R. Sullivan, eds.) 45-54. Dekker, New York. · Zbl 0539.62090
[2] BAILEY, R. A. (1985). Factorial design and Abelian groups. Linear Algebra Appl. 70 349-368. · Zbl 0586.62123 · doi:10.1016/0024-3795(85)90064-3
[3] BAILEY, R. A. (1989). Designs: Mappings between structured sets. In Survey s in Combinatorics 1989 (J. Siemons, ed.). London Math. Soc. Lecture Notes Ser. 141 22-51. Cambridge Univ. Press. · Zbl 0713.05008
[4] BINGHAM, D. and SITTER, R. R. (1999). Minimum aberration two-level fractional factorial splitplot designs. Technometrics 41 62-70.
[5] BOSE, R. C. (1947). Mathematical theory of the sy mmetrical factorial design. Sankhy\?a 8 107-166. · Zbl 0038.09601
[6] BOX, G. E. P. and HUNTER, J. S. (1961). The 2k-p fractional factorial designs. I, II. Technometrics 3 311-351, 449-458. · Zbl 0100.14406 · doi:10.2307/1266725
[7] BOX, G. E. P., HUNTER, W. G. and HUNTER, J. S. (1978). Statistics for Experimenters. Wiley, New York. · Zbl 0394.62003
[8] CHEN, H. and CHENG, C.-S. (1999). Theory of optimal blocking of 2n-mdesigns. Ann. Statist. 27 1948-1973. · Zbl 0961.62066 · doi:10.1214/aos/1017939246
[9] CHEN, H. and HEDAy AT, A. S. (1996). 2n-1 designs with weak minimum aberration. Ann. Statist. 24 2536-2548. · Zbl 0867.62066 · doi:10.1214/aos/1032181167
[10] FRIES, A. and HUNTER, W. G. (1980). Minimum aberration 2k-p designs. Technometrics 22 601-608. JSTOR: · Zbl 0453.62063 · doi:10.2307/1268198
[11] JOHN, F. (1971). Partial Differential Equations. Springer, New York.
[12] MUKERJEE, R. and WU, C. F. J. (1999). Blocking in regular fractional factorials: A projective geometry approach. Ann. Statist. 27 1256-1271. · Zbl 0959.62066 · doi:10.1214/aos/1017938925
[13] MUKERJEE, R. and WU, C. F. J. (2001). Minimum aberration designs for mixed factorials in terms of complementary sets. Statist. Sinica 11 225-239. · Zbl 0967.62054
[14] SHOEMAKER, A. C., TSUI, K.-L. and WU, C. F. J. (1991). Economical experimentation methods for robust design. Technometrics 33 415-427.
[15] SITTER, R. R., CHEN, J. and FEDER, M. (1997). Fractional resolution and minimum aberration in blocked 2n-k designs. Technometrics 39 382-390. JSTOR: · Zbl 0913.62073 · doi:10.2307/1271502
[16] SUN, D. X., WU, C. F. J. and CHEN, Y. (1997). Optimal blocking schemes for 2n and 2n-p designs. Technometrics 39 298-307. JSTOR: · Zbl 0891.62055 · doi:10.2307/1271134
[17] TAGUCHI, G. (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes. Asian Productivity Organization, Toky o.
[18] TANG, B. and WU, C. F. J. (1996). Characterization of minimum aberration 2n-k designs in terms of their complementary designs. Ann. Statist. 24 2549-2559. · Zbl 0867.62068 · doi:10.1214/aos/1032181168
[19] WELCH, W. J., YU, T.-K., KANG, S. M. and SACKS, J. (1990). Computer experiments for quality control by parameter design. J. Quality Technology 22 15-22.
[20] WU, C. F. J. and HAMADA, M. (2000). Experiments: Planning, Analy sis and Parameter Design Optimization. Wiley, New York. · Zbl 0964.62065
[21] WU, C. F. J. and ZHU, Y. (2001). Optimal selection of single array s for parameter design experiments. Technical report, Dept. Statistics, Purdue Univ.
[22] WEST LAFAy ETTE, INDIANA 47907 E-MAIL: yuzhu@stat.purdue.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.