Bulutoglu, Dursun A.; Cheng, Ching-Shui Hidden projection properties of some nonregular fractional factorial designs and their applications. (English) Zbl 1028.62065 Ann. Stat. 31, No. 3, 1012-1026 (2003). Summary: In factor screening, often only a few factors among a large pool of potential factors are active. Under such assumption of effect sparsity, in choosing a design for factor screening, it is important to consider projections of the design onto small subsets of factors. C. S. Cheng [Ann. Stat. 23, 1223-1233 (1995; Zbl 0838.62061); see also Biometrika 85, 491-495 (1998; Zbl 0932.62086)] showed that as long as the run size of a two-level orthogonal array of strength two is not a multiple of 8, its projection onto any four factors allows the estimation of all the main effects and two-factor interactions when the higher-order interactions are negligible. This result applies, for example, to all Plackett-Burman designs whose run sizes are not multiples of 8.It is shown here that the same hidden projection property also holds for Paley designs [R. E. A. C. Paley, J. Math. Phys., Mass. Inst. Techn. 12, 311-320 (1933; Zbl 0007.10004)] of sizes greater than 8, even when their run sizes are multiples of 8. A key result is that such designs do not have defining words of length three or four. Applications of this result to the construction of \(E(s^2)\)-optimal supersaturated designs are also discussed. In particular, certain designs constructed by using C. F. J. Wu’s method [Biometrika 80, 661-669 (1993)] are shown to be \(E(s^2)\)-optimal. The article concludes with some three-level designs with good projection properties. Cited in 1 ReviewCited in 16 Documents MSC: 62K15 Factorial statistical designs 62K05 Optimal statistical designs Keywords:Hadamard matrix; orthogonal array; Paley design; Plackett-Burman design; supersaturated design Citations:Zbl 0838.62061; Zbl 0932.62086; Zbl 0007.10004 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BOOTH, K. H. V. and COX, D. R. (1962). Some sy stematic supersaturated designs. Technometrics 4 489-495. · Zbl 0109.12201 · doi:10.2307/1266285 [2] BOX, G. E. P. and BISGAARD, S. (1993). What can you find out from 12 experimental runs? Quality Engineering 5 663-668. [3] BOX, G. E. P. and Ty SSEDAL, J. (1996). Projective properties of certain orthogonal array s. Biometrika 83 950-955. JSTOR: · Zbl 0883.62087 · doi:10.1093/biomet/83.4.950 [4] CHENG, C.-S. (1995). Some projection properties of orthogonal array s. Ann. Statist. 23 1223-1233. · Zbl 0838.62061 · doi:10.1214/aos/1176324706 [5] CHENG, C.-S. (1997). E(s2)-optimal supersaturated designs. Statist. Sinica 7 929-939. · Zbl 1067.62560 [6] CHENG, C.-S. (1998a). Some hidden projection properties of orthogonal array s with strength three. Biometrika 85 491-495. JSTOR: · Zbl 0932.62086 · doi:10.1093/biomet/85.2.491 [7] CHENG, C.-S. (1998b). Projectivity and resolving power. J. Combin. Inform. Sy stem Sci. 23 47-58. · Zbl 1217.62115 [8] CHENG, S. W. and WU, C. F. J. (2001). Factor screening and response surface exploration (with discussion). Statist. Sinica 11 553-604. · Zbl 0998.62065 [9] CONSTANTINE, G. M. (1987). Combinatorial Theory and Statistical Design. Wiley, New York. · Zbl 0617.05002 [10] DENG, L. Y. and TANG, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statist. Sinica 9 1071-1082. · Zbl 0942.62084 [11] HASSE, H. (1936). Zur Theorie der abstrakten elliptischen Funktionenkorper. I-III. J. Reine Angew. Math. 175 55-62, 69-88, 193-208. · Zbl 0014.24902 · doi:10.1515/crll.1936.175.193 [12] HEDAy AT, A. S., SLOANE, N. J. A. and STUFKEN, J. (1999). Orthogonal Array s. Springer, New York. [13] LIN, D. K. J. (1993). A new class of supersaturated designs. Technometrics 35 28-31. [14] LIN, D. K. J. and DRAPER, N. R. (1992). Projection properties of Plackett and Burman designs. Technometrics 34 423-428. [15] LIN, D. K. J. and DRAPER, N. R. (1993). Generating alias relationships for two-level Plackett and Burman designs. Comput. Statist. Data Anal. 15 147-157. · Zbl 0875.62394 · doi:10.1016/0167-9473(93)90189-Z [16] NGUy EN, N.-K. (1996). An algorithmic approach to constructing supersaturated designs. Technometrics 38 69-73. · Zbl 0900.62416 · doi:10.2307/1268904 [17] PALEY, R. E. A. C. (1933). On orthogonal matrices. J. Math. Phy s. 12 311-320. · Zbl 0007.10004 [18] SLOANE, N. J. A. (1993). Covering array s and intersecting codes. J. Combin. Des. 1 51-63. · Zbl 0828.05023 · doi:10.1002/jcd.3180010106 [19] STARK, H. M. (1973). On the Riemann hy pothesis in hy perelliptic function fields. In Analy tic Number Theory (H. G. Diamond, ed.) 285-302. Amer. Math. Soc., Providence, RI. · Zbl 0271.14012 [20] WANG, J. C. and WU, C. F. J. (1995). A hidden projection property of Plackett-Burman and related designs. Statist. Sinica 5 235-250. · Zbl 0824.62074 [21] WEIL, A. (1948). Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Sci. Indust. 1041. Hermann, Paris. · Zbl 0036.16001 [22] WU, C. F. J. (1993). Construction of supersaturated designs through partially aliased interactions. Biometrika 80 661-669. JSTOR: · Zbl 0800.62483 · doi:10.1093/biomet/80.3.661 [23] BAR HARBOR, MAINE 04609 E-MAIL: dursun@jax.org DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720-3860 E-MAIL: cheng@stat.berkeley.edu This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.