zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: A comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions. (English) Zbl 1028.65086
Summary: The Fourier-sine-with-mapping pseudospectral algorithm of {\it E. Fattal, R. Baer}, and {\it R. Kostoff} [Phase space approach for optimizing grid representations: The mapped Fourier method. Phys. Rev. E 53, 1217 (1996)] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval $r\in [0,\infty]$ (for example, the Coulomb--Schrödinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter $L$ is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in $L$. We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large $r$, and gives somewhat better results than the rational Chebyshev functions of {\it J. P. Boyd} [J. Comput. Phys. 70, 63-88 (1987; Zbl 0614.42013)].

65L15Eigenvalue problems for ODE (numerical methods)
Full Text: DOI
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1965) · Zbl 0171.38503
[2] Banerjee, K.: Hermite function solution of quantum anharmonic oscillator. Proc. R. Soc. lond. A 364, 264 (1978)
[3] Banerjee, K.; Bhatnagar, S. P.; Choudhury, V.; Kanwal, S. S.: Anharmonic--oscillator. Proc. R. Soc. lond. A 360, 575 (1978)
[4] Bardsley, J. N.: Case stud. Atom. phys.. 4, 302 (1974)
[5] Borisov, A. G.: Solution of the radial Schrödinger equation in cylindrical and spherical coordinates by mapped Fourier transform algorithms. J. chem. Phys. 114, 7770 (2001)
[6] Boyd, J. P.: Spectral and pseudospectral methods for eigenvalue and nonseparable boundary value problems. Mon. weather rev. 106, 1192 (1978)
[7] Boyd, J. P.: The choice of spectral functions on a sphere for boundary and eigenvalue problems: a comparison of Chebyshev, Fourier, and associated expansions. Mon. weather rev. 106, 1184 (1978)
[8] Boyd, J. P.: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. comp. Phys. 45, 43 (1982) · Zbl 0488.65035
[9] Boyd, J. P.: Orthogonal rational functions on a semi-infinite interval. J. comp. Phys. 70, 63 (1987) · Zbl 0614.42013
[10] Boyd, J. P.: Spectral methods using rational basis functions on an infinite interval. J. comp. Phys. 69, 112 (1987) · Zbl 0615.65090
[11] Boyd, J. P.: Chebyshev domain truncation is inferior to Fourier domain truncation for solving problems on an infinite interval. J. sci. Comp. 3, 109 (1988) · Zbl 0666.65099
[12] Boyd, J. P.: The rate of convergence of Fourier coefficients for entire functions of infinite order with application to the weideman--cloot sinh-mapping for pseudospectral computations on an infinite interval. J. comp. Phys. 110, 360 (1994) · Zbl 0806.65146
[13] . Corrigendum 136, 227 (1997) · Zbl 0870.11029
[14] Boyd, J. P.: Chebyshev and Fourier spectral methods. (2001) · Zbl 0994.65128
[15] Cloot, A.; Weideman, J. A. C.: Spectral methods and mappings for evolution equations on the infinite line. Comput. meth. Appl. mech. Eng. 80, 467 (1990) · Zbl 0732.65095
[16] Cloot, A.; Weideman, J. A. C.: An adaptive algorithm for spectral computations on unbounded domains. J. comput. Phys. 102, 398 (1992) · Zbl 0760.65095
[17] Davis, P. J.; Rabinowitz, P.: Methods of numerical integration. (1984) · Zbl 0537.65020
[18] Falqués, A.; Iranzo, V.: Edge waves on a longshore shear flow. Phys. fluids 4, 2169 (1992) · Zbl 0763.76010
[19] Fattal, E.; Baer, R.; Kosloff, R.: Phase space approach for optimizing grid representations: the mapped Fourier method. Phys. rev. E 53, 1217 (1996)
[20] Friedrich, H.: Theoretical atomic physics. (1990)
[21] Lemoine, D.: Optimized grid representations in curvilinear coordinates: the mapped sine Fourier method. Chem. phys. Lett. 320, 492 (2000)
[22] Lin, S. -H.; Pierrehumbert, R. T.: Does Ekman friction suppress baroclinic instability?. J. atmos. Sci. 45, 2920 (1988)
[23] Nest, M.; Meyer, H. -D.: Improving the mapping mechanism of the mapped Fourier method. Chem. phys. Lett. 352, 486 (2002)
[24] Robson, R. E.; Prytz, A.: The discrete ordinate/pseudo-spectral method: review and application from a physicist’s perspective. Austral. J. Phys. 46, 465 (1993)
[25] Tang, Tao: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. comput. 14, 594 (1993) · Zbl 0782.65110
[26] Weideman, J. A. C.; Reddy, S. C.: A Matlab differentiation matrix suite. ACM trans. Math. software 26, 465 (2000)