×

zbMATH — the first resource for mathematics

Maximum-norm estimates for resolvents of elliptic finite element operators. (English) Zbl 1028.65113
Let \(A_h\) be the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on a convex domain with smooth boundary. It is shown that outside any sector around the axis with arbitrarily small angle \[ |(\lambda I -A_h)^{-1} v|\leq C (1+|\lambda |)^{-1} |v| \] holds for the maximum norm. The proof for \(|\lambda |\leq c h^2\) differs from that for \(|\lambda |\geq c h^2\), and special care is done in order to avoid the log term that is connected with the Ritz projector. This direct proof of the estimate of the resolvent is independent of an earlier proof via the semigroup generated by \(A_h\).

MSC:
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65J10 Numerical solutions to equations with linear operators (do not use 65Fxx)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623 – 727. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405 · doi.org
[2] Nikolai Yu. Bakaev, Maximum norm resolvent estimates for elliptic finite element operators, BIT 41 (2001), no. 2, 215 – 239. · Zbl 0979.65097 · doi:10.1023/A:1021934205234 · doi.org
[3] N. Yu. Bakaev, S. Larsson, and V. Thomée, Long time behaviour of backward difference type methods for parabolic equations with memory in Banach space, East-West J. Numer. Math. 6 (1998), no. 3, 185 – 206. · Zbl 0913.65139
[4] Chuan Miao Chen and Yun Qing Huang, \?^1,\? stability of finite element approximations of elliptic problems, Hunan Ann. Math. 6 (1986), no. 2, 81 – 89 (Chinese, with English summary).
[5] H. Chen, An \(L^2\) and \(L^\infty-\)Error Analysis for Parabolic Finite Element Equations with Applications by Superconvergence and Error Expansions, Thesis, Heidelberg University 1993.
[6] M. Crouzeix, S. Larsson, and V. Thomée, Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), no. 207, 121 – 140. · Zbl 0806.65096
[7] Michel Crouzeix and Vidar Thomée, Resolvent estimates in \?_\? for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes, Comput. Methods Appl. Math. 1 (2001), no. 1, 3 – 17. · Zbl 0987.65093 · doi:10.2478/cmam-2001-0001 · doi.org
[8] Jean Descloux, On finite element matrices, SIAM J. Numer. Anal. 9 (1972), 260 – 265. · Zbl 0242.15009 · doi:10.1137/0709025 · doi.org
[9] G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285 – 344 (1988). · Zbl 0652.34069
[10] Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, The stability in \?^\? of the \?²-projection into finite element function spaces, Numer. Math. 23 (1974/75), 193 – 197. · Zbl 0297.41022 · doi:10.1007/BF01400302 · doi.org
[11] H.Fujii, Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press (1973), 91-106.
[12] Richard Haverkamp, Eine Aussage zur \?_\infty -Stabilität und zur genauen Konvergenzordnung der \?\textonesuperior \(_{0}\)-Projektionen, Numer. Math. 44 (1984), no. 3, 393 – 405 (German, with English summary). · Zbl 0575.65012 · doi:10.1007/BF01405570 · doi.org
[13] Ju. P. Krasovskiĭ, Isolation of the singularity in Green’s function, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 977 – 1010 (Russian).
[14] Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937 – 958. · Zbl 0298.65071
[15] J. A. Nitsche and Mary F. Wheeler, \?_\infty -boundedness of the finite element Galerkin operator for parabolic problems, Numer. Funct. Anal. Optim. 4 (1981/82), no. 4, 325 – 353. · Zbl 0533.65071 · doi:10.1080/01630568208816121 · doi.org
[16] C. Palencia, Maximum norm analysis of completely discrete finite element methods for parabolic problems, SIAM J. Numer. Anal. 33 (1996), no. 4, 1654 – 1668. · Zbl 0860.65093 · doi:10.1137/S0036142993259779 · doi.org
[17] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[18] Rolf Rannacher, \?^\infty -stability estimates and asymptotic error expansion for parabolic finite element equations, Extrapolation and defect correction (1990), Bonner Math. Schriften, vol. 228, Univ. Bonn, Bonn, 1991, pp. 74 – 94. · Zbl 0748.65072
[19] Rolf Rannacher and Ridgway Scott, Some optimal error estimates for piecewise linear finite element approximations, Math. Comp. 38 (1982), no. 158, 437 – 445. · Zbl 0483.65007
[20] Alfred H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I. Global estimates, Math. Comp. 67 (1998), no. 223, 877 – 899. · Zbl 0905.65105
[21] A. H. Schatz, V. C. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), no. 3, 265 – 304. · Zbl 0414.65066 · doi:10.1002/cpa.3160330305 · doi.org
[22] A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1349 – 1385. , https://doi.org/10.1002/(SICI)1097-0312(199811/12)51:11/123.3.CO;2-T · Zbl 0932.65103
[23] A. H. Schatz and L. B. Wahlbin, On the quasi-optimality in \?_\infty of the \?\textonesuperior -projection into finite element spaces, Math. Comp. 38 (1982), no. 157, 1 – 22. · Zbl 0483.65006
[24] Ridgway Scott, Optimal \?^\infty estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681 – 697. · Zbl 0349.65060
[25] L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483 – 493. · Zbl 0696.65007
[26] H. Bruce Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc. 199 (1974), 141 – 162. · Zbl 0264.35043
[27] Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. · Zbl 0884.65097
[28] Vidar Thomée and Lars B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable, Numer. Math. 41 (1983), no. 3, 345 – 371. · Zbl 0515.65082 · doi:10.1007/BF01418330 · doi.org
[29] V. Thomée and L. B. Wahlbin, Stability and analyticity in maximum-norm for simplicial Lagrange finite element semidiscretizations of parabolic equations with Dirichlet boundary conditions, Numer. Math. 87 (2000), no. 2, 373 – 389. · Zbl 0973.65079 · doi:10.1007/s002110000184 · doi.org
[30] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978.
[31] Lars B. Wahlbin, A quasioptimal estimate in piecewise polynomial Galerkin approximation of parabolic problems, Numerical analysis (Dundee, 1981) Lecture Notes in Math., vol. 912, Springer, Berlin-New York, 1982, pp. 230 – 245. · Zbl 0515.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.