Numerical simulation of interfacial flows by smoothed particle hydrodynamics. (English) Zbl 1028.76039

Summary: An implementation of smoothed particle hydrodynamics method is presented to treat two-dimensional interfacial flows, that is, flow fields with different fluids separated by sharp interfaces. Test cases are presented to show that the present formulation remains stable for low density ratios. In particular, results are compared with those obtained by other solution techniques, showing a good agreement. The classical dam-break problem is studied by the present two-phase approach, and the effects of density-ratio variations are discussed. The influence of air entrapment on loads is discussed.


76M28 Particle methods and lattice-gas methods
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI


[1] Bagnold, R.A., Interim report on wave pressure research, J. inst. civil eng., June, 202-226, (1939)
[2] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Int. J. numer. mech. eng., 43, 785-819, (1999) · Zbl 0939.74076
[3] Benz, W., Smooth particle hydrodynamics: a review, (), 269-288
[4] Bicknell, G.V., The equation of motion of particles in smoothed particle hydrodynamics, SIAM J. sci. statist. comput., 12, 1198-1206, (1991) · Zbl 0725.76077
[5] Bonet, J.; Lok, T.-S.L., Variational and momentum preservation aspects of SPH formulations, Comput. methods appl. mech. eng., 180, 97-115, (1999) · Zbl 0962.76075
[6] A. Colagrossi, M. Landrini, M.P. Tulin, A Lagrangian meshless method for free-surface flows, in: Proc. 4th Numerical Towing Tank Symposium, Hamburg, 2001
[7] Colicchio, G.; Colagrossi, A.; Greco, M.; Landrini, M., Free-surface flow after a dam break: a comparative study, Ship tech. res., 49/3, (2002)
[8] G. Colicchio, M. Landrini, J.C. Chaplin, Level-set modelling of the air – water flow generated by a surface piercing body, in: Proc. 8th Int. Conf. on Numerical Ship Hydrodynamics, Korea, 2003
[9] Cumberbatch, E., The impact of a water wedge on a wall, J. fluid mech., 7, 353-374, (1960) · Zbl 0091.18003
[10] Cummins, S.J.; Rudman, M., An SPH projection method, J. comput. phys., 152, 584-607, (1999) · Zbl 0954.76074
[11] O.M. Faltinsen, M. Landrini, M. Greco, Slamming in marine applications, J. Eng. Math. (2003), to be published · Zbl 1041.76502
[12] M. Greco, M. Landrini, O.M. Faltinsen, Impact flows and loads on ship-deck structures, J. Fluids Struct. (2003), submitted
[13] Hoover, W.G., Isomorphism linking smooth particles and embedded atoms, Physica A, 260, 244-254, (1998)
[14] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear sci. eng., 123, 421-434, (1996)
[15] M. Landrini, A. Colagrossi, M.P. Tulin, Breaking bow and stern waves: numerical simulations, in: Proc. 16th Int. Work. Water Waves Float. Bodies, Hiroshima, Japan, 2001a
[16] M. Landrini, A. Colagrossi, M.P. Tulin, Numerical studies of breaking bow waves compared to experimental observations, in: Proc. 4th Numerical Towing Tank Symposium, Hamburg, Germany, 2001b
[17] Lanson, N.; Vila, J.P., Meshless methods fpr conservation laws, Math. comput. simulation, 55, 493-501, (2001) · Zbl 0982.65102
[18] Martin, J.C.; Moyce, W.J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. trans. roy. soc. London, ser. A, 244, 312-324, (1952)
[19] Monaghan, J.J., An introduction to SPH, Comput. phys. commun., 48, 89-96, (1988) · Zbl 0673.76089
[20] Monaghan, J.J., Smoothed particle hydrodynamics, Ann. rev. astronom. astrophys., 30, 543-574, (1992)
[21] Monaghan, J.J., Simulating free surface flows with SPH, J. comput. phys., 110, 399-406, (1994) · Zbl 0794.76073
[22] Monaghan, J.J.; Gingold, R.A., Shock simulation by the particle method SPH, J. comput. phys., 52, 374-389, (1983) · Zbl 0572.76059
[23] Monaghan, J.J.; Kocharyan, A., SPH simulation of multi-phase flow, Comput. phys. commun., 87, 225-235, (1995) · Zbl 0923.76195
[24] Monaghan, J.J.; Cas, R.A.F.; Kos, A.M.; Hallworth, M., Gravity currents descending a ramp in a stratified tank, J. fluid mech., 379, 39-69, (1999) · Zbl 0938.76506
[25] Monaghan, J.J.; Kos, A., Solitary waves on a cretan beach, J. waterway, port, coastal, Ocean eng., May/June, 145-154, (1999)
[26] J.P. Morris, Analysis of smoothed particle hydrodynamics with applications, Ph.D. Dissertation Thesis, Dept. Math. Monash Un., 1996
[27] Morris, J.P.; Fox, P.J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. comput. phys., 136, 214-226, (1997) · Zbl 0889.76066
[28] Morris, J.P., Simulating surface tension with smoothed particle hydrodynamics, Int. J. numer. methods fluids, 33, 333-353, (2000) · Zbl 0985.76072
[29] Nugent, S.; Posch, H.A., Liquid drops and surface tension with smoothed particle applied mechanics, Phys. rev. E, 62, 4, 4968-4975, (2000), Part A
[30] Peregrine, H.; Thais, L., The effect of entrained air in violent water wave impacts, J. fluid mech., 325, 337-397, (1996) · Zbl 0888.76077
[31] Peregrine, H., Water-wave impact on walls, Ann. rev. fluid mech., 35, 23-43, (2003) · Zbl 1039.76007
[32] Pohle, F.V., The Lagrangian equations of hydrodynamics: solutions which are analytic functions of the time, (1950), Grad. School of Arts and Science of New York Univ New York
[33] Ritter, A., Die fortpflanzung der wasserwellen, Z. ver. deut. ing., 36, (1982)
[34] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow calculations, Ann. rev. fluid mech., 31, 567-603, (1999)
[35] Sethian, J.A.; Smereka, P., Level-set methods for fluid interfaces, Ann. rev. fluid mech., 35, 341-372, (2003) · Zbl 1041.76057
[36] Stansby, P.K.; Chegini, A.; Barnes, T.C.D., The initial stages of dam-break flow, J. fluid mech., 374, 407-424, (1998) · Zbl 0941.76515
[37] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146-159, (1994) · Zbl 0808.76077
[38] Swegle, J.W.; Hicks, D.L.; Attaway, S.W., Smoothed particle hydrodynamics stability analysis, J. comput. phys., 116, 123-134, (1995) · Zbl 0818.76071
[39] Zhang, S.; Yue, D.K.P.; Tanizawa, K., Simulation of plunging wave impact on a vertical wall, J. fluid mech., 327, 221-254, (1996) · Zbl 0905.76011
[40] Z.Q. Zhou, J.O. De Kat, B. Buchner, A nonlinear 3-D approach to simulate green water dynamics on deck, in: J. Piquet (Ed.), Proc. 7th Int. Conf. Num. Ship Hydrod., Nantes, 1999, pp. 5.1-1, 15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.