zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Classical boundary-value problem in Riemannian quantum gravity and Taub-Bolt-anti-de Sitter geometries. (English) Zbl 1028.83508
Summary: For an $SU(2)\times U(1)$-invariant $S^3$ boundary the classical Dirichlet problem of Riemannian quantum gravity is studied for positive-definite regular solutions of the Einstein equations with a negative cosmological constant within biaxial Bianchi-IX metrics containing bolts, i.e., within the family of Taub-Bolt-anti-de Sitter (Taub-Bolt-AdS) metrics. Such metrics are obtained from the two-parameter Taub-NUT-anti-de Sitter family. The condition of regularity requires them to have only one free parameter $(L)$ and constrains $L$ to take values within a narrow range; the other parameter is determined as a double-valued function of $L$ and hence there is a bifurcation within the family. We found that any axially symmetric $S^3$-boundary can be filled in with at least one solution coming from each of these two branches despite the severe limit on the permissible values of $L$. The number of infilling solutions can be one, three or five and they appear or disappear catastrophically in pairs as the values of the two radii of $S^3$ are varied. The solutions occur simultaneously in both branches and hence the total number of independent infillings is two, six or ten. We further showed that when the two radii are of the same order and large the number of solutions is two. In the isotropic limit this holds for small radii as well. These results are to be contrasted with the one-parameter self-dual Taub-NUT-AdS infilling solutions of the same boundary-value problem studied previously.

MSC:
83C45Quantization of the gravitational field
83C15Closed form solutions of equations in general relativity
WorldCat.org
Full Text: DOI
References:
[1] Akbar, M. M.; D’eath, P. D.: Classical boundary-value problem in Riemannian quantum gravity and self-dual taub--NUT--(anti-)de Sitter geometries. Nucl. phys. B 648, 397 (2003) · Zbl 1005.83011
[2] Barnard, S.; Child, J. M.: Higher algebra. (1936) · Zbl 62.1067.01
[3] Birkeland, R.: Über die auflösung algebraischer gleichungen durch hypergeometrische funktionen. Math. Z. 26, 565-578 (1927) · Zbl 53.0332.03
[4] Brown, J. D.; Creighton, J.; Mann, R. B.: Temperature, energy and heat capacity of asymptotically anti-de Sitter black holes. Phys. rev. D 50, 6394 (1994)
[5] Carter, B.: Hamilton--Jacobi and Schrödinger separable solutions of Einstein’s equations. Commun. math. Phys. 10, 280 (1968) · Zbl 0162.59302
[6] Chamblin, A.; Emparan, R.; Johnson, C. V.; Myers, R. C.: Large N phases, gravitational instantons and the nuts and bolts of AdS holography. Phys. rev. D 59, 064010 (1999)
[7] Clarkson, R.; Fatibene, L.; Mann, R. B.: Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes · Zbl 1010.83049
[8] Eguchi, T.; Gilkey, P. B.; Hanson, A. J.: Gravitation, gauge theories and differential geometry. Phys. rep. 66, 213 (1980)
[9] Emparan, R.; Johnson, C. V.; Myers, R. C.: Surface terms as counterterms in the AdS/CFT correspondence. Phys. rev. D 60, 104001 (1999)
[10] Ghezelbash, A. M.; Mann, R. B.: Nutty bubbles. Jhep 0209, 045 (2002)
[11] Gibbons, G. W.; Pope, C. N.: The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. math. Phys. 66, 267 (1979)
[12] Hawking, S. W.; Hunter, C. J.; Page, D. N.: NUT charge, anti-de Sitter space and entropy. Phys. rev. D 59, 044033 (1999)
[13] Hawking, S. W.; Page, D. N.: Thermodynamics of black holes in anti-de Sitter space. Commun. math. Phys. 87, 577 (1983)
[14] Hitchin, N. J.: Twistor spaces, Einstein metrics and isomonodromic deformations. J. differential geom. 42, No. 1, 30-112 (1995) · Zbl 0861.53049
[15] Gibbons, G. W.; Hawking, S. W.: Classification of gravitational instanton symmetries. Commun. math. Phys. 66, 291 (1979)
[16] Jensen, L. G.; Louko, J.; Ruback, P. J.: Biaxial Bianchi type IX quantum cosmology. Nucl. phys. B 351, 662 (1991) · Zbl 0722.53081
[17] Maldacena, J. M.: The large N limit of superconformal field theories and supergravity. Adv. theor. Math. phys. 2, 231 (1998) · Zbl 0914.53047
[18] Mann, R. B.: Entropy of rotating Misner string spacetimes. Phys. rev. D 61, 084013 (2000)
[19] Sakai, T.: Cut loci of berger’s spheres. Hokkaido math. J. 10, No. 1, 143-155 (1981) · Zbl 0469.53041
[20] Skenderis, K.: Asymptotically anti-de Sitter spacetimes and their stress energy tensor. Int. J. Mod. phys. A 16, 740 (2001) · Zbl 1028.83039
[21] Skenderis, K.: Lecture notes on holographic renormalization. Class. quantum grav. 19, 5849 (2002) · Zbl 1044.83009
[22] Page, D. N.: Taub--NUT instanton with an horizon. Phys. lett. B 78, 249 (1978)
[23] Pedersen, H.: Einstein metrics, spinning top motions and monopoles. Math. ann. 274, 35 (1986) · Zbl 0566.53058
[24] Poston, T.; Stewart, I.: Catastrophe theory and its applications. (1987) · Zbl 0382.58006
[25] Tod, K. P.: Self-dual Einstein metrics from the Painlevé VI equation. Phys. lett. A 190, 221 (1994) · Zbl 0960.83505