×

The number of powers of 2 in a representation of large even integers. I. (English) Zbl 1029.11049

Summary: Under the generalized Riemann hypothesis, it is proved that for any integer \(k\geq 770\) there is \(N_k> 0\) depending on \(k\) only such that every even integer \(\geq N_k\) is a sum of two odd prime numbers and \(k\) powers of 2.
For Part II, see ibid. 41, 1255-1271 (1998; Zbl 0924.11086).

MSC:

11P32 Goldbach-type theorems; other additive questions involving primes
11N36 Applications of sieve methods
11P55 Applications of the Hardy-Littlewood method

Citations:

Zbl 0924.11086
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hardy, G. H., Littlewood, J. E., Some problems of ”patitio numerorum” V: A further contribution to the study of Goldbach’s problem,Proc. London Math. Soc., 1923, 22(2): 45. · JFM 49.0127.03
[2] Montgomery, H. L., Vaughan, R. C., On the exceptional set in Goldbach’s problem,Acta Arith., 1975, 27: 353. · Zbl 0301.10043
[3] Linnik, Yu. V., Prime numbers and powers of two,Trudy Mat. Inst. Steklov, 1951, 38: 151.
[4] Linnik, Yu. V., Addition of prime numbers and powers of one and the same number,Mat. Sb. (N.S.), 1953, 32: 3.
[5] Vinogradov, A. I., On an ”almost binary” problem,Izv. Akad. Nauk. SSSR, Ser. Mat., 1956, 20: 713. · Zbl 0072.31303
[6] Gallagher, P. X., Primes and powers of 2,Invent. Math., 1975, 29: 125. · Zbl 0305.10044
[7] Romanoff, N. P., Über einige Sätze der additiven Zahlentheorie,Math. Ann., 1934, 57: 668. · JFM 60.0131.03
[8] Chen, J. R., On Goldbach’s problem and the sieve methods,Sci. Sin., 1978, 21: 701. · Zbl 0399.10046
[9] Davenport, H.,Multiplicative Number Theory, 2nd ed., New York: Springer, 1980. · Zbl 0453.10002
[10] Pan, C. D. Pan, C. B.,Fundamentals of Analytic Number Theory (in Chinese), Beijing: Science Press, 1991. · Zbl 0738.55007
[11] Pan, C. D., Pan, C. B.,Goldbach Conjecture, Beijing: Science Press, 1992.
[12] Titchmarsh, E. C.,The Theory of the Riemann Zeta-function, 2nd ed., Oxford: Oxford University Press, 1986. · Zbl 0601.10026
[13] Vaughan, R. C.,The Hardy-Littlewood Method, 2nd ed., Cambridge: Cambridge University Press, 1997. · Zbl 0868.11046
[14] Rasser, J. B., Schoenfeld, L., Approximate formulas for some functions of prime numb,Illinois J. Math., 1962, 6: 64.
[15] Ricci, G., Sull’andamento della differenza di numeri primi consecutivi,Riv. Mat. Univ. Parma, 1954, 5: 3. · Zbl 0058.27602
[16] Halberstam, H., Richert, H. E.,Sieve Methods, London: Academic Press, 1974. · Zbl 0298.10026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.