zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Topologies on the direct sum of topological Abelian groups. (English) Zbl 1029.22002
The authors show that the asterisk topologies on the direct sum of topological Abelian groups used by Kaplan and Banaszczyk in the duality theory are different. However, in the category of locally quasi-convex groups they do not differ, and coincide with the coproduct topology.

22A05Structure of general topological groups
54H11Topological groups (topological aspects)
Full Text: DOI
[1] Aussenhofer, L.: Contributions to the duality theory of abelian topological groups. Dissertationes math. 384 (1999) · Zbl 0953.22001
[2] Banaszczyk, W.: Additive subgroups of topological vector spaces. Lecture notes in math. 1466 (1991) · Zbl 0743.46002
[3] Brown, R.; Higgins, P. J.; Morris, S. A.: Countable products and sums of lines and circles: their closed subgroups, quotients and duality properties. Math. proc. Cambridge philos. Soc. 78, 19-32 (1975) · Zbl 0304.22001
[4] M. Bruguera Padró, Grupos topológicos y grupos de convergencia: Estudio de la dualidad de Pontryagin, Ph.D. Thesis, Barcelona, 1999
[5] Dikranjan, D.: The lattice of group topologies and compact representations. Res. exp. Math. 24, 105-126 (2001) · Zbl 1015.54015
[6] Dikranjan, D. N.; Stoyanov, L. N.; Prodanov, I. R.: Topological groups. Monographs texts pure appl. Math. 130 (1989)
[7] Higgins, P. J.: Coproducts of topological abelian groups. J. algebra 44, No. 1, 152-159 (1977) · Zbl 0398.22001
[8] Jarchow, H.: Locally convex spaces. Mathematische leiftäden (1981) · Zbl 0466.46001
[9] Kaplan, S.: Extensions of the pontrjagin duality I: Infinite products. Duke math. J. 15, 649-658 (1948) · Zbl 0034.30601
[10] Noble, N.: K-groups and duality. Trans. amer. Math. soc. 151, 551-561 (1970) · Zbl 0229.22012
[11] Nickolas, P.: Coproducts of abelian topological groups. Topology appl. 120, No. 3, 403-426 (2002) · Zbl 1001.22001
[12] Nienhuys, J. W.: Some examples of monothetic groups. Fund. math. 88, 163-171 (1975) · Zbl 0302.22004
[13] Varopoulos, N. Th.: Studies in harmonic analysis. Math. proc. Cambridge philos. Soc. 60, 465-516 (1964) · Zbl 0161.11103
[14] Venkataraman, R.: A characterization of Pontryagin duality. Math. Z. 149, 109-119 (1976) · Zbl 0313.43011