×

Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses. (English) Zbl 1029.34042

The authors give an in-depth study of various properties of solutions to the system \[ x'= x[a(t)- b(t)x]- c(t, x) y,\quad y'= y[d(t)- e(t) y/x], \] which contains a number of special cases arising in applications. State of the art is shown by an extensive bibliography. Under several hypotheses on the coefficients of the system, the ultimate boundedness of solutions and the permanence of the system (as defined in the paper) are proved.
By adding the assumption of periodicity (almost-periodicity) of the coefficients, the existence and the uniqueness of positive periodic (almost-periodic) solutions are proved. In addition, the considered solutions are globally asymptotically stable (as defined in the paper) in all the three cases.

MSC:

34D40 Ultimate boundedness (MSC2000)
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arditi, R.; Perrin, N.; Saiah, H., Functional response and heterogeneities: an experimental test with cladocerans, OIKOS, 60, 69-75 (1991)
[2] Arditi, R.; Saiah, H., Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73, 1544-1551 (1992)
[3] Arrowsmith, D. K.; Place, C. M., Dynamical Systems (1992), Chapman and Hall: Chapman and Hall London · Zbl 0754.34001
[4] Barbălat, I., Systems d’equations differential d’oscillations nonlinearies, Rev. Roumaine Math. Pures Appl., 4, 267-270 (1959) · Zbl 0090.06601
[5] Beltrami, E., Mathematics for Dynamical Modeling (1987), Academic Press: Academic Press Boston, MA
[6] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 1530-1535 (1992)
[7] Butle, G. J.; Freedman, H. I., Periodic solutions of a predator-prey system with periodic coefficients, Math. Biosci., 55, 27-38 (1981) · Zbl 0471.92020
[8] Cantrell, R. S.; Cosner, C., Practical persistence in ecological models with comparison methods, Proc. Roy. Soc. Edinburgh Sect. A, 126, 247-272 (1996) · Zbl 0845.92023
[9] Cantrell, R. S.; Cosner, C., Practical persistence in diffusive food chain models, Natural Resource Modelling, 11, 21-34 (1998)
[10] Cao, Y. L.; Gard, T. C., Practical persistence for differential delay models of population interactions, Electron. J. Differential Equations Conf., 1, 41-53 (1997) · Zbl 0913.34064
[11] Cheng, K. S.; Hsu, S. B.; Lin, S. S., Some results on global stability of a predator-prey model, J. Math. Biol., 12 (1981)
[12] Collings, J. B., The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36, 149-168 (1997) · Zbl 0890.92021
[13] Collings, J. B., Bifurcation and stability analysis for a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57, 63-76 (1995) · Zbl 0810.92024
[14] Eveleigh, E. S.; Chant, D. A., Experimental studies on acarine predator-prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina:Phytoseiidae), Canad. J. Zool., 60, 611-629 (1982)
[15] Fan, M.; Wang, K.; Jiang, D. Q., Existence and global attractivity of positive periodic solutions of periodic \(n\)-species Lotka-Volterra competition systems with several deviating arguments, Math. Biosci., 160, 47-61 (1999) · Zbl 0964.34059
[16] Fan, M.; Wang, K., Global periodic solutions of a generalized \(n\)-species Gilpin-Ayala competition model, Comput. Math. Appl., 40, 1141-1151 (2000) · Zbl 0954.92027
[17] M. Fan, K. Wang, Global existence of positive periodic solutions of predator-preys systems with infinite delays, J. Math. Anal. Appl., to appear; M. Fan, K. Wang, Global existence of positive periodic solutions of predator-preys systems with infinite delays, J. Math. Anal. Appl., to appear · Zbl 0995.34063
[18] Freedman, H. I., Deterministic Mathematical Models in Population Ecology (1980), Marcel Dekker: Marcel Dekker New York · Zbl 0448.92023
[19] Gaines, R. E.; Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0326.34021
[20] Gasull, A.; Kooij, R. E.; Torrregrosa, J., Limit cycles in the Holling-Tanner model, Publ. Mat., 41, 149-167 (1997) · Zbl 0880.34028
[21] Hanski, I., The functional response of predator: worries about scale, TREE, 6, 141-142 (1991)
[22] Hassell, M. P.; May, R. M., Stability in insectbrat-parasite models, J. Anim. Ecol., 42, 693-726 (1973)
[23] Hassell, M. P., The Dynamics of Arthropod Predator-Prey Systems (1978), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0429.92018
[24] Holling, C. S., The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Canad. Entomol., 91, 293-320 (1959)
[25] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Canad., 46, 1-60 (1965)
[26] Hsu, S. B.; Huang, T. W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 763-783 (1995) · Zbl 0832.34035
[27] Hsu, S. B.; Hubbell, S. P.; Waltman, P., A contribution to the theory of competing species, Ecol. Monographs, 48, 337-349 (1978)
[28] Hutson, V.; Law, R., Permanent coexistence in general models of there interacting species, J. Math. Biol., 25, 285-298 (1985) · Zbl 0579.92023
[29] Ivlev, V. S., Experimental Ecology of the Feeding of Fishes (1961), Yale Univ. Press: Yale Univ. Press New Haven, CT
[30] Sugie, J., Two parameters bifurcation in a predator-prey system of Ivlev type, J. Math. Anal. Appl., 222, 349-371 (1998) · Zbl 0894.34025
[31] Kazarinov, N.; van den Driessche, P., A model predator-prey systems with functional response, Math. Biosci., 39, 125-134 (1978) · Zbl 0382.92007
[32] Kooij, R. E.; Zegeling, A., A predator-prey model with Ivlev’s functional response, J. Math. Anal. Biol., 198, 473-489 (1996) · Zbl 0851.34030
[33] Leslie, P. H.; Gower, J. C., The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47, 219-234 (1960) · Zbl 0103.12502
[34] Li, Y. K., Periodic solutions of periodic delay predator-prey system, Proc. Amer. Math. Soc., 12, 1331-1335 (1999) · Zbl 0917.34057
[35] May, R. M., Stability and Complexity in Model Ecosystems (1974), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ
[36] May, R. M., Limit cycles in predator-prey communities, Science, 177, 900-902 (1972)
[37] Murray, J. D., Mathematical Biology (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0682.92001
[38] Oaten, A.; Murdoch, W. W., Functional response and stability in predator-prey systems, Amer. Natural., 108, 289-298 (1975)
[39] Renshaw, E., Modeling Biological Populations in Space and Time (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0754.92018
[40] Rosenzweig, M. L.; Macarthur, R. H., Graphical representation and stability conditions for predator-prey interactions, Amer. Natural., 47, 209-223 (1963)
[41] Rosenzweig, M. L., Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 385-387 (1977)
[42] Sabelis, M. W., Predation on spider mites, (Helle, W.; Sabelis, M. W., Spider Mites: Their Biology, Natural Enemies and Control (World Crop Pests, Vol. 1B) (1985), Elsevier: Elsevier Amsterdam), 103-129
[43] Saez, E.; Gonzalez-Olivarest, E., Dynamics of a predator-prey model, SIAM J. Appl. Math., 59, 1867-1878 (1999) · Zbl 0934.92027
[44] Smith, J. M., Models in Ecology (1974), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0312.92001
[45] Tanner, J. T., The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56, 855-867 (1975)
[46] Taylor, R. J., Predation (1984), Chapman and Hall: Chapman and Hall London
[47] Tineo, A., Permanence of a large class of periodic predator-prey systems, J. Math. Anal. Appl., 241, 83-91 (2000) · Zbl 0961.34022
[48] Wollkind, D. J.; Collings, J. B.; Logan, J., Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, Bull. Math. Biol., 50, 379-409 (1988) · Zbl 0652.92019
[49] Yoshizawa, T., Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions (1975), Springer-Verlag: Springer-Verlag New York, pp. 210-223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.