zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Periodic solutions of a nonlinear suspension bridge equation with damping and nonconstant load. (English) Zbl 1029.35022
The authors consider the existence of periodic solutions for Lazer-McKenna suspension bridge equation with damping and nonconstant load: $$u_{tt}+u_{xxxx}+\delta u_t+ku^+=h(x,t),\quad\text{in }\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\times \bbfR,$$ $$u\left(\pm \frac{\pi}{2},t\right)= u_{xx} \left(\pm \frac{\pi}{2},t\right)=0,\quad t\in\bbfR,$$ $$u\text{ is }\pi\text{-periodic in }t\text{ and even in }x, $$ where $\delta \neq 0, h(x,t)=\alpha \cos x+\beta\cos(2t)\cos x+\gamma \sin(2t)\cos x$. This paper discusses the relationship between the spring constant $k$ and the damping $\delta$, which guarantees the existence of the sign-changing periodic solution under the case that $h(x,t)$ is single-sign, by using Lyapunov-Schmidt reduction methods. The result answers partly the open problem in {\it A. C. Lazer} and {\it P. J. McKenna} [SIAM Rev. 32, 537-578 (1990; Zbl 0725.73057)].

35B10Periodic solutions of PDE
35L75Nonlinear hyperbolic PDE of higher $(>2)$ order
35L35Higher order hyperbolic equations, boundary value problems
74H45Vibrations (dynamical problems in solid mechanics)
Full Text: DOI
[1] Lazer, A. C.; Mckenna, P. J.: Large-amplitude periodic oscillations in suspension Bridge: some new connections with nonlinear analysis. SIAM rev. 32, 537-578 (1990) · Zbl 0725.73057
[2] Mckenna, P. J.; Walter, W.: Nonlinear oscillation in a suspension Bridge. Arch. rational mech. Anal. 98, 167-177 (1987) · Zbl 0676.35003
[3] Choi, Q. H.; Jung, T.; Mckenna, P. J.: The study of a nonlinear suspension Bridge equation by a variational reduction method. Appl. anal. 50, 71-90 (1995)
[4] Choi, Q. H.; Jung, T.: A nonlinear suspension Bridge equation with nonconstant load. Nonlinear anal. 35, 649-668 (1999) · Zbl 0934.74031
[5] Choi, Q. H.; Jung, T.: A nonlinear beam equation with nonconstant loads. Nonlinear anal. 30, 5515-5525 (1997) · Zbl 0892.35093
[6] Mckenna, P. J.; Walter, W.: Traveling waves in a suspension Bridge. SIAM J. Appl. math. 50, 703-715 (1990) · Zbl 0699.73038
[7] Ahmed, N. U.; Harbi, H.: Mathematical analysis of dynamic models of suspension Bridge. SIAM J. Appl. math. 58, 853-874 (1998) · Zbl 0912.93048
[8] Humphreys, L. D.: Numerical mountain pass solutions of a suspension Bridge equation. Nonlinear anal. 28, 1811-1826 (1997) · Zbl 0877.35126
[9] Micheletti, A. M.; Pistoia, A.: Nontrivial solutions for some fourth order semilinear elliptic problems. Nonlinear anal. 34, 509-523 (1998) · Zbl 0929.35053
[10] Micheletti, A. M.; Pistoia, A.: Multiplicity results for a fourth order semilinear elliptic problem. Nonlinear anal. 31, 895-908 (1998) · Zbl 0898.35032
[11] Tanaka, K.: On the range of wave operators. Tokyo J. Math. 8, 377-387 (1985) · Zbl 0607.35063
[12] Kim, W. S.: Multiplicity result for semilinear dissipative hyperbolic equations. J. math. Anal. appl. 231, 34-46 (1999) · Zbl 0930.35021