×

Periodic solutions of a nonlinear suspension bridge equation with damping and nonconstant load. (English) Zbl 1029.35022

The authors consider the existence of periodic solutions for Lazer-McKenna suspension bridge equation with damping and nonconstant load: \[ u_{tt}+u_{xxxx}+\delta u_t+ku^+=h(x,t),\quad\text{in }\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\times \mathbb{R}, \]
\[ u\left(\pm \frac{\pi}{2},t\right)= u_{xx} \left(\pm \frac{\pi}{2},t\right)=0,\quad t\in\mathbb{R}, \]
\[ u\text{ is }\pi\text{-periodic in }t\text{ and even in }x, \] where \(\delta \neq 0, h(x,t)=\alpha \cos x+\beta\cos(2t)\cos x+\gamma \sin(2t)\cos x\). This paper discusses the relationship between the spring constant \(k\) and the damping \(\delta\), which guarantees the existence of the sign-changing periodic solution under the case that \(h(x,t)\) is single-sign, by using Lyapunov-Schmidt reduction methods. The result answers partly the open problem in A. C. Lazer and P. J. McKenna [SIAM Rev. 32, 537-578 (1990; Zbl 0725.73057)].

MSC:

35B10 Periodic solutions to PDEs
35L75 Higher-order nonlinear hyperbolic equations
35L35 Initial-boundary value problems for higher-order hyperbolic equations
74H45 Vibrations in dynamical problems in solid mechanics

Citations:

Zbl 0725.73057
Full Text: DOI

References:

[1] Lazer, A. C.; McKenna, P. J., Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Rev., 32, 537-578 (1990) · Zbl 0725.73057
[2] McKenna, P. J.; Walter, W., Nonlinear oscillation in a suspension bridge, Arch. Rational Mech. Anal., 98, 167-177 (1987) · Zbl 0676.35003
[3] Choi, Q. H.; Jung, T.; McKenna, P. J., The study of a nonlinear suspension bridge equation by a variational reduction method, Appl. Anal., 50, 71-90 (1995)
[4] Choi, Q. H.; Jung, T., A nonlinear suspension bridge equation with nonconstant load, Nonlinear Anal., 35, 649-668 (1999) · Zbl 0934.74031
[5] Choi, Q. H.; Jung, T., A nonlinear beam equation with nonconstant loads, Nonlinear Anal., 30, 5515-5525 (1997) · Zbl 0892.35093
[6] McKenna, P. J.; Walter, W., Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50, 703-715 (1990) · Zbl 0699.73038
[7] Ahmed, N. U.; Harbi, H., Mathematical analysis of dynamic models of suspension bridge, SIAM J. Appl. Math., 58, 853-874 (1998) · Zbl 0912.93048
[8] Humphreys, L. D., Numerical Mountain Pass solutions of a suspension bridge equation, Nonlinear Anal., 28, 1811-1826 (1997) · Zbl 0877.35126
[9] Micheletti, A. M.; Pistoia, A., Nontrivial solutions for some fourth order semilinear elliptic problems, Nonlinear Anal., 34, 509-523 (1998) · Zbl 0929.35053
[10] Micheletti, A. M.; Pistoia, A., Multiplicity results for a fourth order semilinear elliptic problem, Nonlinear Anal., 31, 895-908 (1998) · Zbl 0898.35032
[11] Tanaka, K., On the range of wave operators, Tokyo J. Math., 8, 377-387 (1985) · Zbl 0607.35063
[12] Kim, W. S., Multiplicity result for semilinear dissipative hyperbolic equations, J. Math. Anal. Appl., 231, 34-46 (1999) · Zbl 0930.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.