Kalenda, Ondřej F. K. M-bases in spaces of continuous functions on ordinals. (English) Zbl 1029.46006 Colloq. Math. 92, No. 2, 179-187 (2002). An uncountable M-basis \((x_i, f_i)_{i \in I}\) of a Banach space \(X\) is said to be countably norming, if the subspace \[ S=\{f \in X^*: \{i \in I: f(x_i) \neq 0 \} \;\text{ is} \;\text{ countable}\} \] is norming. The main result of the present paper is that the space \(C[0, \omega_2]\) has no countably norming M-basis. This answers a question by G. Alexandrov and A. Plichko. Reviewer: Vladimir Kadets (Kharkov) Cited in 1 ReviewCited in 8 Documents MSC: 46B04 Isometric theory of Banach spaces 46B26 Nonseparable Banach spaces 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces Keywords:Markushevich bases; spaces of continuous functions on ordinals PDFBibTeX XMLCite \textit{O. F. K. Kalenda}, Colloq. Math. 92, No. 2, 179--187 (2002; Zbl 1029.46006) Full Text: DOI